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Abstract—Recent speech synthesis technology can generate
high-quality speech indistinguishable from human speech, thus
introducing various security and privacy risks. Numerous recent
studies have focused on fake voice detection to address these
risks, with many claiming to achieve ideal performance. However,
is this really the case? A recent research work introduced
Speaker-Irrelative-Features (SiFs), unrelated to the information
in speech files but capable of influencing fake detectors. This
means that existing detectors may rely on SiFs to a certain
extent to distinguish real and fake speech. In this paper, we
introduce an evaluation framework to evaluate the influence of
SiFs in existing fake voice detectors in depth. We evaluate three
SiFs which include background noise, the mute parts before and
after voice, and the sampling rate on ASVspoof2019 and FoR.
Our results confirm the substantial influence of SiFs on fake
voice detection performance, and we delve into the analysis of
the underlying mechanisms.

Index Terms—Deepfake, AI-Synthesized Speech, Fake Voice
Detection

I. INTRODUCTION

Speech serves as a predominant communication modality
for information propagation within human society. Moreover,
its utility has extended significantly into digital systems,
encompassing data transmission, authentication processes, and
various other applications. Speech synthesis is the technology
that can generate speech for specific target sounds. Traditional
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speech synthesis methods use splicing and editing to generate
speech and result in a distinctly unnatural sound that is easily
detectable by the human ear. With the profound integration of
deep learning technology, the performance of recent speech
synthesis researches [1]–[3] have witnessed notable enhance-
ments. These technologies have been widely used in various
scenarios. However, these speech synthesis technologies can
also generate high-quality fake voices and create a series of
security and privacy risks such as telecom fraud, political
smear campaigns, etc. A number of examples have been
reported. As an illustration, a noteworthy incident highlighted
in The Wall Street Journal involved cybercriminals employing
AI to replicate the voice of a CEO in an unusual cybercrime
case [4]. In this scenario, the malefactors exploited AI-based
software with remarkable proficiency, successfully mimicking
the CEO’s voice. They utilized this deceptive technology to
orchestrate a sophisticated phone scam, ultimately defrauding
a substantial amount exceeding $243,000. Therefore, it is
very significant to develop powerful fake voice detection
technologies to mitigate security and privacy risks.

Over the past few years, fake voice detection has expe-
rienced rapid development and achieved significant progress.
Most recent research works claim that their method is very ef-
fective and presents an ideal performance in their experiment.
It seems that fake voice detection is no longer a challenging
problem. However, a recent work [5] shows that these fake
voice detectors are easily disturbed by a set of factors named



Speaker-irrelative Features (SiFs) which are not related to
speech. This suggests that these detectors partly depend on
beyond the characteristics of the speech itself to distinguish
between real and fake speech. Moreover, the performance of
detectors may no longer be optimal if there are changes in the
SiFs. It will seriously affect the usability of these detectors in
the real world.

In this paper, we design an evaluation framework and
conduct a series of experiments to further analyze the impact
of SiFs on the existing detectors. We remove a part of SiFs
in the dataset separately to create new datasets. And then, we
retrain the target detectors with these new datasets to evaluate
the performance. We select the two most widely used datasets
ASVspoof2019 and FoR to evaluate the performance and
discuss the specific effects of different SiFs on the detectors.
The result of experiments shows that all of the SiFs selected
in this paper have significant effects on the performance of the
detectors.

The main contributions of this paper can be summarized as
follows:

• We analyze the defects of existing fake voice detection
methods and discuss the negative influence of SiFs.

• We design an evaluation framework to further evaluate
the performance of existing fake voice detectors. The
result indicates that all of the existing detectors are
significantly influenced by SiFs and get poor performance
after removing some kinds of SiFs in most instances.

• We discuss the mechanism of action of SiFs in the
decision of the detectors.

II. RELATED WORKS

Existing research on fake voice detection has employed
diverse methodologies. Most of them are deep learning based
technology. Deep learning methodologies leverage sophisti-
cated Deep Neural Network (DNN) models to extract nuanced
high-level features, enabling the identification of subtle differ-
ences between fake and authentic vocalizations.

Alzantot et al. [6] introduced a detection system built
upon a Residual Convolutional Neural Network, utilizing
Mel-frequency cepstrum (MFCC), Constant Q-transform cep-
stral coefficients (CQCC), and short-time Fourier transform
(STFT) as input features. Ballesteros et al. [7] proposed
Deep4SNet, a computer vision-based method that employs
histogram visualization of time-domain waveforms for the
classification of voice conversion speech. Tak et al. [8] in-
novatively designed RawNet2, an end-to-end approach that
processes raw waveforms as input, leveraging neural networks
to extract frequency-domain features for detection. Wang et al.
[9] presented DeepSonar, a system based on neural network
features extracted from a DNN-based speaker recognition
system, demonstrating optimal performance in their experi-
ments. Monteiro et al. developed an end-to-end Lookup-based
Convolutional Neural Network (LCNN) ensemble model for
fake voice detection [10]. Tak et al. [11] using wav2vec
2.0 which is a pre-trained speech representation model to

extract the implicit representation of speech and get an ideal
performance.

III. EVALUATION METHOD

A. Insight

Several recent researches on fake voice detection got ideal
performance in their experiments which utilized deep learning
models. Most of them are trained and evaluated on the
ASVspoof2019 dataset. However, there are several studies
[12]–[14] indicate that the obvious difference of mute parts
before and after human voice between bonafide and spoof
samples in ASVspoof2019 dataset may result in all detectors
trained and evaluated using this dataset easily distinguishing
spoof samples based on the feature. This situation can create
an illusion for the designer that the model has achieved ideal
performance. It means that the real performance of these
methods may not be excellent as shown in their experiments.
A recent study [5] shows that existing detectors are sensi-
tive to a series of features named Speaker-Irrelative-Features
(SiFs) which are not related to the information expressed
by the speech files, such as mute parts before and after the
speaker’s voice, background noise of speech, etc. The work
[15] proposed an adversarial attack method by modifying the
background noise and mute parts before and after the speech
to trick the fake voice detectors into making wrong decisions.
This implies that these detection methods might not effectively
capture the fundamental distinctions between real and fake
voices but instead focus more on SiFs. To delve deeper into
the influence of SiFs on fake voice detection, we have devised
a series of evaluations.

Fig. 1: Architecture of Evaluation Framework

B. Evaluation Framework

This evaluation of the paper has two primary goals: ana-
lyzing the impact of SiFs on existing methods and exploring
the specific ways SiFs affect the existing detectors. To achieve
these objectives, we design an evaluation framework shown in
Figure 1 by processing the dataset and retraining existing de-
tection detectors. Firstly, we preprocess the dataset to eliminate
a portion of SiFs, thereby eliminating their influence. Then,
we retrain the existing detectors by using the preprocessed
dataset and evaluate their performance. If the detectors do
not learn SiFs during the training process, retraining the



detector after removing SiFs is unlikely to cause significant
performance fluctuations. Conversely, if noticeable changes
occur in performance, it indicates that SiFs are crucial features
learned by the detector to distinguish between fake and real
speech.

C. Dataset Process

The dataset is the basis of deep learning model training. We
select the background noise, mute parts before and after the
speaker’s voice, and the sampling rate of speech files as the
evaluation features which are the most representative features
of SiFs. To evaluate the impact of these features, we remove
these features from the datasets separately using Sound eX-
change (SoX) which is a cross-platform audio editing software
to create new evaluation datasets. We get four datasets after the
removal process: 1) Raw Set: This is the raw dataset without
any processing. 2) Denoised Set: This is the dataset that has
removed the background noise by using sox {file} -n noiseprof
| sox {file} {new file} noisered - 0.01 and other information is
consistent with the raw set. 3) Silence Set: This is the dataset
that has removed the mute parts before and after the speaker’s
voice by using sox {file} {new file} silence 1 0.00001 1% -1
0.00001 1% lowpass 4000 and other information is consistent
with the raw set. 4) Msr Set: This is the dataset that modifies
the sampling rate from 16000 to 8000 by using sox {} -r 8000
{} and other information is consistent with the raw set.

D. Model Retraining

To analyze the performance difference, we retrain the target
models in our evaluation. Every model is retrained with the
raw dataset and three processed datasets. All models we select
are collected from open-source repositories released by the
authors and all of the settings are the same as the authors’
version besides datasets. We retrain these models by using the
raw dataset and three processed datasets with the same setting
and get the three versions of these models: 1) Raw Model:
This model is retrained with the training subset of the raw set.
2) Denoised Model: This model is retrained with the training
subset of the denoised set. 3) Silence Model: This model is
retrained with the training subset of the silence set. 4) Msr
Model: This model is retrained with the training subset of the
msr set.

IV. EVALUATION RESULT

A. Evaluation Setup

1) Detectors: In the evaluation of this paper, we choose
seven recent detectors published in top conferences or related
challenges: AASIST [16], RawGAT-ST [17], RawNet2 [8],
SAMO [18], MTLISSD [19], SSL [11] and FastAudio [20].
RawNet2 is the baseline for DeepFake in ASVspoof 2021
and other detectors get ideal performance in ASVspoof2019
datasets. We obtained the implementations of these detectors
from open-source repositories made available by the authors.

2) Datasets: We select the two most commonly used datasets
ASVspoof2019 LA subset [21] and Fake-or-Real (FoR) [22].
The detailed information of ASVspoof2019 is shown in Table I

and FoR is a more simple dataset that contains 42260 bonafide
samples and 42463 spoof samples generated by 7 synthetic-
based algorithms. We process the ASVspoof2019 using the
method in Section III and get three new datasets. The FoR
has been processed to remove the mute parts before and after
voice so we didn’t do this again. The training and evaluation
subsets of each dataset are processed identically.

TABLE I: Statistics of ASVspoof 2019 LA Dataset

Subset
Speech Samples Speakers Spoofing Algorithms

Logic Access Total:107 VC TTS VC+TTS
Bonafide Spoof Male Female

Training 2,580 22,800 8 12 2 4 0Development 2,548 22,296 8 12
Evaluation 7,335 63,882 30 37 5 11 3

B. Evaluation on ASVspoof2019

The performance of retrained models is presented in Table II
and the difference in performance between the models trained
with raw set and those trained with the processed set is shown
in Table III. It is obvious that the performance of most of the
target detectors shows significant fluctuations after removing
specific SiFs and the change in the silence set is particularly
obvious. All of the average performance differences shown in
Table III are negative. The performance fluctuations will be
further amplified if the detectors trained on the raw set are
employed to distinguish the samples in processed datasets.
The result may indicate that all of the SiFs we select in this
paper are one of the bases for the detector to distinguish real
and fake speech.

TABLE II: The result of the performance of retrained models
on ASVspoof2019 eval subset. The evaluation indicator is
Equal-Error-Rate (EER)

Models Dataset
Raw Set Denoised Set Silence Set Msr Set

AASIST 1.13% 2.50% 24.45% 1.37%
RawGAT-ST 1.39% 1.39% 22.50% 1.51%

RawNet2 5.49% 5.97% 23.64% 5.91%
SAMO 1.10% 1.99% 18.34% 1.40%

MTLISSD 2.58% 6.47% 23.43% 13.66%
SSL 0.22% 0.46% 7.97% 0.32%

FastAudio 1.78% 2.30% 19.70% 3.41%

To further analyze the influence of the mute parts, we also
extract the data of performance about every spoof algorithm
which is shown in Table IV. The result of the silence set shows
an obvious pattern that the Equal-Error-Rate (EER) of raw
models in the synthetic-based algorithms (A07-A16) is better
than the one in the voice conversion-based algorithms(A17-
A19) in the raw set but opposite in the silence set. We
compared the difference in duration between samples in the
raw set and silence set shown in Figure 2. The result shows that
the duration of the mute parts before and after the speaker’s
voice of speeches generated by synthetic-based algorithms



is significantly shorter than speeches generated by voice
conversion-based algorithms and real speeches in all three
subsets. It means that the mute parts are one of the important
bases for the detectors to make judgments. Results on other
data sets also show that various types of SiFs have a significant
impact on detector performance but their impact on different
algorithms is not obvious.

TABLE III: The performance difference between raw model
and other models trained with processed dataset

Models Dataset
Denoised Set Silence Set Msr Set

AASIST -121.24% -2063.72% -21.24%
RawGAT-ST 0.00% -1518.71% -8.63%

RawNet2 -8.74% -330.60% -7.65%
SAMO -80.91% -1567.27% -27.27%

MTLISSD -150.78% -808.14% -429.46%
SSL -109.09% -3522.73% -45.45%

FastAudio -29.21% -1006.74% -91.57%
Average -71.40% -1545.00% -90.18%

C. Evaluation on FoR

All of the target detectors we select are designed based on
ASVspoof2019. The above experiments indicate that SiFs in
ASVspoof2019 are an important factor affecting the detectors’
judgment. In this evaluation, we use the FoR which is the
dataset that was not considered during the detector design
stage to evaluate the influence of SiFs across datasets to gain a
comprehensive understanding of their impact on fake voice de-
tection. The SAMO requires the speaker’s information which
is not given by FoR, so we can’t evaluate the performance of
it in this dataset.

The performance of these detectors on FoR is shown in
Table V. While the performance of most detectors on the
raw set appears to be acceptable, it falls short of the levels
achieved on ASVspoof2019. Given that the spoof algorithms
in the evaluation set of ASVspoof2019 differ from those in the
training set, while the algorithms in FoR remain the same, the
obtained result is still notably distant from the ideal scenario.
There is another interesting phenomenon that SiFs still have a
significant impact on detector performance but the impact is
positive in half of the results. We speculate that the difference
may be due to the mute parts. The denoise and modifying
sampling rate process will impact the mute parts of the samples
in ASVspoof2019 but the samples in FoR have no mute parts.
This may mean that multiple SiFs can interact with each other
and amplify the effects.

D. Analysis of the influence mechanism of SiFs

The above evaluations prove that SiFs have a significant
impact on the performance of fake voice detectors. In this sub-
section, we try to visualize the characteristics of different type
of samples from four datasets in ASVspoof2019 evaluation to
analyze the influence mechanism of SiFs. We select AASIST
as the target and extract the output of sinc convolution layer
after selu activation function during model inference. The

(a) train set (b) development set

(c) evaluation set

Fig. 2: Average duration of raw set and silence set. The
difference represents the duration of mute parts

sample LA E 4633286 from the ASVspoof2019 evaluation
subset is visualized in Figure 3.

(a) Raw sample (b) Silence sample

(c) Denoised sample (d) Msr sample

Fig. 3: Visualized feature of LA E 4633286. The X-axis
represents the time domain and the Y-axis represents the value
of sinc convolution.

The sinc convolution can be viewed as a set of bandpass
filters and the output of it represents the extraction results of
frequency-domain features by AASIST. The removing silence
process changes the duration of the sample, causing the
speaker’s voice to appear multiple times in the figure because
of the padding process of AASIST. The denoised mainly
impacts the characteristic information of mute parts before and
after the voice and makes some samples smoother in hearing.
The modifying sampling rate process makes low-frequency
information more prominent in the feature map and indirectly
changes the time domain length in the feature map because the
number of sampled data points becomes half of the original.
The impact of this feature on detection performance may vary



TABLE IV: All spoof algorithms performance of the retrained models on ASVspoof2019. The evaluation indicator is EER (%)

Model Dataset Spoof Algorithm Average
EERA07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

AASIST

Raw 0.80 0.44 0.00 1.16 0.31 0.91 0.10 0.14 0.65 0.72 1.52 3.40 0.62 1.13
Denoised 0.33 1.26 0.04 0.46 0.26 0.47 0.18 0.16 0.34 1.38 2.88 9.23 1.49 2.50
Silence 39.23 3.29 1.10 50.40 44.58 40.74 7.69 15.59 33.27 4.31 2.19 5.92 1.08 24.45

Msr 0.24 1.53 0.11 0.35 0.33 0.29 0.33 0.20 0.22 0.55 1.10 3.77 0.53 1.37

RawGAT-ST

Raw 1.19 0.44 0.00 1.06 0.31 0.91 0.10 0.14 0.65 0.72 1.52 3.40 0.62 1.39
Denoised 0.67 1.28 0.24 0.83 0.50 1.14 0.43 0.20 0.59 1.12 2.62 6.90 0.99 2.06
Silence 38.69 3.03 1.93 50.40 35.00 39.49 5.79 9.56 32.94 3.78 1.52 4.82 0.89 22.50

Msr 0.63 2.12 0.42 0.67 0.59 0.45 1.26 0.20 0.30 0.61 1.30 3.82 0.42 1.51

RawNet2

Raw 2.91 4.62 0.15 2.93 1.35 2.93 0.23 0.92 2.67 1.30 11.37 16.92 1.85 5.49
Denoised 1.59 4.60 0.27 2.05 1.25 2.95 0.39 1.11 2.44 1.51 9.93 24.34 2.81 5.97
Silence 40.03 17.17 2.91 43.96 35.98 35.80 9.08 17.36 27.48 7.65 9.12 16.30 2.42 23.64

Msr 0.69 3.11 0.20 1.16 0.61 1.14 1.01 0.41 0.59 1.34 11.64 20.65 4.31 5.91

SAMO

Raw 0.55 1.90 0.54 0.63 0.54 0.59 0.53 0.55 0.63 0.84 1.26 3.85 0.93 1.10
Denoised 1.49 1.99 1.47 1.79 1.51 1.73 1.47 1.47 1.60 1.92 2.81 5.82 1.99 1.99
Silence 25.99 2.57 2.68 50.51 28.16 43.06 5.86 5.68 15.12 4.34 2.68 4.60 2.83 18.34

Msr 0.78 3.39 0.77 0.79 0.77 0.78 0.77 0.77 0.80 0.80 1.18 4.86 0.95 1.40

MTLISSD

Raw 0.19 0.14 0.04 1.53 0.1 0.45 0.65 1.65 2.16 0.26 13.12 0.86 1.43 2.58
Denoised 0.14 1.24 0.19 0.41 0.14 1.26 0.12 0.11 0.11 0.65 5.45 41.11 5.96 6.47
Silence 36.67 5.48 5.76 48.62 18.8 36.63 18.97 14.82 19.02 24.01 6.88 32.42 9.97 23.43

Msr 0.12 1.44 0.12 0.33 0.38 0.12 0.12 0.34 0.38 0.47 46.12 43.26 25.29 13.66

SSL

Raw 0.02 0.18 0.00 0.26 0.15 0.11 0.00 0.02 0.06 0.06 0.33 0.55 0.33 0.22
Denoised 0.10 0.31 0.04 0.26 0.18 0.15 0.04 0.06 0.10 0.12 0.33 1.81 0.43 0.46
Silence 2.00 0.18 0.02 28.08 19.97 6.61 0.10 0.41 2.14 0.45 0.04 0.77 0.29 7.97

Msr 0.02 0.16 0.00 0.23 0.20 0.06 0.00 0.02 0.06 0.06 0.45 0.77 0.43 0.32

FastAudio

Raw Set 0.23 1.12 0.02 0.43 0.34 0.23 0.10 0.19 0.19 0.16 1.04 7.55 0.23 1.78
Denoised 0.10 0.81 0.08 0.30 0.26 0.37 0.12 0.12 0.18 0.12 0.75 9.24 0.19 2.30
Silence 17.28 3.36 1.06 46.66 44.50 26.92 2.30 8.47 25.62 4.13 3.14 20.29 1.00 19.70

Msr 0.23 0.81 0.06 0.38 0.42 0.24 0.12 0.24 0.24 0.12 3.15 11.97 0.53 3.41

TABLE V: The result of the performance of retrained models
on FoR. Diff represents the performance difference between
the raw model and other models trained with processed dataset

Models Raw Csr Denoised
EER EER Diff EER Diff

AASIST 5.65% 3.63% 35.75% 5.39% 4.60%
RawGAT-ST 3.79% 3.37% 11.08% 11.57% -205.28%

RawNet2 9.95% 5.65% 43.22% 15.36% -54.37%
MTLISSD 26.50% 43.16% -62.87% 14.26% 46.19%

SSL 1.81% 1.40% 22.65% 0.58% 67.96%
FastAudio 0.00% 1.31% - 9.80% -

if the detector reads audio files at a fixed sample rate. It means
that the method of file reading may also influence the detection
results and also shows the diversity of the way SiFs influence
the result of detectors.

V. DISCUSSION

The result of evaluations in this paper proves that the SiFs
have a significant impact on the detection performance of fake
voice detectors and SiFs serve as one of the foundations for
the detector to differentiate between fake and real speech. The
poor performance of the detectors in the evaluations means that
the actual performance of existing detectors is not as good as
claimed. We believe that the existing perspective of design has
not captured the essential difference between the real and fake
voice. In this paper, we just evaluate the influence of a part
of SiFs. It is highly probable that there are additional SiFs

that will similarly exert a substantial influence on detector
performance. The detectors are vulnerable to attacks if they
rely on SiFs to distinguish between real and fake speech
because modifying specific SiFs is easy to do. It is hard to
remove all of the SiFs from speech files. Therefore, we need to
explore a new perspective on design to build practical detectors
for real-world environments.

VI. CONCLUSION

In this paper, we first analyze the negative influences of
SiFs on the existing fake voice detection methods. Then, we
propose an evaluation framework to evaluate the influence of
background noise, mute parts before and after the speaker’s
voice, and sampling rate of speech files which are represen-
tative SiFs. The result of the evaluation shows that existing
detectors are greatly influenced by SiFs and we also analyze
the influence mechanism of these features. Finally, we discuss
the direction of high-quality detector design.
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