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Abstract—Malware developers exploit packing techniques to
protect malicious apps from analysis. These evolving techniques,
coupled with diverse anti-unpacker strategies, often render cur-
rent studies ineffective in unpacking Android apps. In this study,
we introduce BPFDex, a novel Android unpacking framework
that leverages eBPF, a kernel component of the Android system.
We successfully apply eBPF’s excellent kernel observability and
tracing capability to Android unpacking, both on real devices and
emulators. Operating within the kernel space, BPFDex avoids
drawbacks of common unpacking techniques. BPFDex monitors
apps across both native and kernel layers, restores Dex data from
memory, and adapts to different packing strategies according
to observed packing behaviors. Furthermore, we summarize
patterns in anti-unpacker behaviors among Android packers,
establishing criteria to improve existing unpacking strategies. We
conduct extensive experiments on BPFDex by leveraging more
than 3k apps packed by over eight different packers. The results
demonstrate that BPFDex successfully bypasses anti-unpacker
strategies and unpacks apps packed by various packers, in
contrast to other unpackers that can handle at most two packers.

Index Terms—Android packer, android unpacking, dynamic
analysis, android kernel.

I. INTRODUCTION

NDROID’s dominance in the dynamic landscape of
mobile computing is evident, with over 70% market
share [1]. And Android apps have long been a prime malware
target for criminals aiming to gain unauthorized access to
system resources, compromise data integrity, and violate user’s
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privacy [2], [3], [S], [6], [7]. In recent years, attackers have
abused packing techniques to bypass the vetting process and
then distribute malicious code through app markets, targeting
Android devices [4], [8]. Specifically, packing techniques
introduce significant complexity when analyzing malicious
code using static [48] and dynamic [51] analysis techniques.
These techniques include detecting the running environment,
hiding the original Dex data (i.e., the Dex file and its
constituent items), and releasing them at runtime, etc [9],
[10]. While packing services are initially intended to prevent
legitimate apps from being reverse engineered and repackaged
[11], the abuse of app packing has emerged as a new obstacle
in safeguarding Android users.

Numerous unpacking tools (i.e., DexHunter) [12], have
been developed for Android apps to address the aforemen-
tioned issue by revealing the concealed payload within packed
apps. Nonetheless, the ongoing struggle between packers and
unpackers persists, with packers continually adapting to under-
mine the effectiveness of unpackers. They employ a range of
strategies to identify unpackers, hinder analysis, and alter the
original Dex file loading process to prevent unpackers from
gathering all concealed Dex data [10]. The current unpackers
face several challenges that remain unaddressed:

e Cl-Effectiveness: Unpackers are expected to retrieve
all concealed Dex data and assemble it into a valid
Dex file. However, the existing analysis and unpack-
ing tools typically perform dynamic analysis based on
Android emulators (e.g., Qemu) [13], [17], debugging
techniques (e.g., ptrace) [14], [20], and DBI (dynamic
binary instrumentation) hook frameworks (e.g., Frida and
Valgrind) [15], [16], [18], [19]. These approaches may
inadvertently leave unique traces in the system, such
as special binary files and system properties, enabling
sophisticated Android packers to identify them, thereby
evading analysis (i.e., anti-unpacker). Furthermore, some
packers [59], [60] may release the real code just before
execution, subsequently erasing it. They may also hook
system library methods (e.g., write) to hinder the dumping
of dex code during the execution [10]. As a result,
unpackers either fail to acquire all the concealed Dex data
or end up with invalid Dex files.

e (C2-Adaptability: Packers are constantly evolving, with
each employing different packing strategies. Current
unpackers often struggle to adapt due to rigid unpack-
ing strategies and insufficient consideration of packers’
evolution.
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e (3-Stability: Unpackers should ensure minimal interfer-
ence with the operation of the Android system and apps.
Some existing unpackers depend on altering the Android
system image or installing additional kernel modules
[12], [19], [21], [22], [23] to achieve their objectives,
leading to complex operations and an unstable system
environment.

In this study, we aim to address the aforementioned chal-
lenges by developing BPFDex, a novel unpacking tool for
Android devices. This tool leverages the Android kernel, built
upon the Linux kernel. We utilize a recent Linux technol-
ogy, eBPF (Extended Berkeley Packet Filter) [25], which is
inherently available in the latest Android devices. The eBPF
technology allows for the writing and compiling code in
userspace, and subsequently injects it into an active kernel as
a response to chosen triggers. To the best of our knowledge,
BPFDex is the pioneering Android unpacker that employs
eBPF, which fulfills the three challenges, to bypass anti-
unpacker techniques and unpack more efficiently.

Specifically, unlike debuggers, which alter the status of the
process being debugged, DBI that loads additional libraries
and code into the application’s memory, or emulators that
possess distinct fingerprints, BPFDex leverages a Linux kernel
tracing mechanism [26]. This mechanism operates within a
virtual machine in the kernel, making it less susceptible to
detection or interference by packers. Furthermore, BPFDex
can effectively bypass the aforementioned anti-unpacker tech-
niques and restore the original file from memory data released
by packers during runtime, thereby addressing C1. To tackle
C2, BPFDex doesn’t rely on a static strategy for unpack-
ing apps. Instead, it chooses suitable data collection points
based on observed behaviors. Regarding C3, eBPF technol-
ogy has been incorporated into the Android system kernel
since Android 9.0 [43], which implies that, in contrast to
other solutions [12], [18], [21], [22], [23], [75], BPFDex
can monitor packers’ behavior without tampering with the
original running environment such as the system image, the
application package, or the kernel. Moreover, the principle of
safety and the verification process associated with eBPF ensure
the correct function of BPFDex and the safety of Android
kernel. Consequently, our method is robust and can operate
safely on real devices, which effectively addresses C3.

More specifically, to enhance data collection and behavior
monitoring, BPFDex performs monitoring in multiple layers
including native libraries function calls and direct system
calls in ART (Android runtime). For this purpose, we build
a mapping from these functions to their exact addresses in
the memory layout by resolving the loaded system libraries.
Then, we utilize Kprobes (kernel space probes) and uprobes
(user space probes) to hook these addresses for obtaining the
concrete parameter values of respective functions at runtime.
After analyzing the tracked information, we determine the
packing behaviors and choose suitable Dex data collection
points to gather the dynamically released Dex data. Lastly, we
compile the retrieved Dex data into valid Dex files that can be
analyzed using standard static analysis tools. Additionally, we
formulate packers’ features by integrating information from
native libraries, classes and methods to improve efficiency of
unpacking. If packers exhibit similar features, BPFDex can
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accelerate unpacking process by using the identical hooking
strategy.

In summary,
contributions:

this paper makes the following key

e We propose a novel kernel-based approach to unpack
the Android apps through packing behaviors tracking by
using eBPF. This approach can effectively elude detection
by packers, enhancing the efficiency of unpacking. More-
over, after inspecting more than eight packers using this
approach, we have summarized patterns in anti-unpacker
behaviors among Android packers, establishing criteria to
help enhance the unpacking strategies of existing tools.

e We design and implement a new unpacking framework
named BPFDex on both real devices and emulators.
This framework dynamically tracks packing behaviors
across multiple Android layers based on eBPF. BPFDex
is released at https://github.com/BPFDex/BPFDex.

e We have conducted comprehensive experiments on
BPFDex by leveraging more than 3k apps packed by over
eight different packers. The evaluation results demon-
strate that BPFDex successfully bypasses anti-unpacker
strategies and unpacks apps packed by various packers,
in contrast to other unpackers that can handle at most two
packers.

The remainder of this paper is structured as follows: Sec-
tion II provides essential background information. The design
and implementation of BPFDex are detailed in Section III,
while Section IV presents the experimental results. Section V
discusses the limitations of BPFDex and future work. Finally,
the related work is introduced in Section VI, and the paper
concludes in Section VIIL.

II. BACKGROUND

A. Extended Berkeley Packet Filter

The Extended Berkeley Packet Filter (eBPF) [25] is a
lightweight virtual machine within the Linux kernel. It enables
privileged users to safely load and execute bytecode in the
kernel in response to selected events in both kernel and user
space. An eBPF program can hook the kernel instruction
using the kernel probe (kprobe) event or the kernel trace-
point event [28]. When the target instruction is executed, the
corresponding eBPF program performs specified operations
immediately, such as retrieving a register value or memory
data. In addition to supporting kernel instrumentation, an eBPF
program can hook user space programs through the user space
probe (uprobe) event [28] or the userland statically defined
tracing (USDT) event. Both kprobe and uprobe have been
supported by the Android system since Android 9.0 [24]. The
eBPF programs can be developed using the BPF Compiler
Collection (bec) [30], which provides high-level programming
interfaces, to develop eBPF programs.

During eBPF’s development, safety was paramount when
considering its inclusion in the Linux kernel. All processes
intending to load eBPF programs into the Linux kernel must
operate in privileged mode (root), preventing untrusted pro-
grams from loading eBPF programs. Even when a process
is permitted to load an eBPF program, all programs must
still pass through the eBPF verifier [31], which ensures the
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safety of the program itself. Furthermore, eBPF programs
cannot directly access arbitrary kernel memory. Data and data
structures outside the program’s context must be accessed via
eBPF helpers, ensuring consistent data access.

B. Android App Packing

Typically, Android packers safeguard applications in three
major ways: concealing Dex files, inhibiting the dumping of
Dex files from memory, and obstructing static analysis.

1) Concealing Dex Files: The original Dex files in packed
apps are typically concealed through runtime releasing,
dynamic modification, and reimplementation using native
code. Android packers primarily use native code to protect
these Dex files, employing three main strategies.

Firstly, from version 5.0 onwards, Android’s default run-
time is ART. It performs on-device Ahead-Of-Time (AOT)
compilation, compiling Dalvik bytecode into platform-specific
native code during installation or initial run. This conversion
uses the dex2oat function. Unpackers can directly access the
hidden Dex files by decompiling the OAT files if dex2oat has
processed the Dex files. To safeguard Dex data, packers often
encrypt it and store it in special files. They then dynamically
release the bytecode into memory for execution during the
app’s operation. Secondly, packers also protect Dex data
by dynamically decrypting or modifying it before use and
encrypting it after use. This prevents the Dex data from being
dumped from memory. Consequently, specific Dex data might
be missing in the dumped Dex data if it isn’t collected at the
correct points (i.e., functions) or at the right time. Thirdly,
certain advanced packers (e.g., Qihoo [61]) reimplement the
functionalities of specific methods using native code. As
a result, there is no bytecode released for these protected
methods during the execution of the apps.

2) Inhibiting The Dumping Of Dex Files: To prevent Dex
files from being dumped form memory, packers typically
employ four primary strategies: environment checking, anti-
debugging, anti-DBI frameworks, and system library function
hooking.

Firstly, packers scrutinize their operational environments
to inhibit the execution of packed apps on emulators or
customized AOSP devices. This is because many Android
analysis and unpacking tools utilize the Android emulator or
modify AOSP to facilitate unpacking. Secondly, to obstruct
the debugging or instrumentation by unpacking tools, packers
often attach threads to the packed app for anti-debugging
and monitor process ports for anti-DBI frameworks. Thirdly,
unpackers typically dump the Dex data from memory during
runtime using Android’s system library functions (e.g., read
and write). Consequently, packers hook these functions to
hinder the invocation of these methods.

However, BPFDex operates on actual devices and utilizes
eBPF technology to hook the packed apps, subsequently
extracting the Dex data via eBPF helpers. As a result, we
successfully circumvented the aforementioned hurdles.

3) Obstructing Static Analysis: Packers a variety of tech-
niques, including obfuscation and integrity checking, to
safeguard Dex files from static tampering. Typically, Dex files
are obfuscated prior to packing, implying that unpackers can
only retrieve the obfuscated Dex data from memory during
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Fig. 1. The overview and workflow of BPFDex.

runtime. Analysts are then required to further deobfuscate
the bytecode in the recovered Dex file to facilitate a better
understanding of the app.

In addition, some packers verify the integrity of apps
during installation or initial run to prevent tampering of
apks by checking the MDS5, SHA-1, and other signatures.
If any discrepancies are detected between the original apk
and the current one, the packers will terminate the process.
Consequently, these technologies significantly escalate the cost
of understanding and testing packed apps.

Nonetheless, the focus of this paper is on unpacking apps,
thus deobfuscation and integrity checks bypass are beyond its
scope.

ITII. BPFDEX

In this section, we introduce the overview and the workflow
(III-A) of BPFDex. Then, we describe the components of
BPFDex, including packer analysis module (III-B), monitoring
and data collection module (III-C) and data processing module
(III-D).

A. Overview

Fig. 1 illustrates that BPFDex is comprised of three pri-
mary components: the packer analysis module, the monitoring
and data collection module, and the data processing mod-
ule. Utilizing Linux kernel features, BPFDex tracks packing
behaviors and unpacks the app. It’s worth noting that the
kernel configurations necessary for enabling eBPF (e.g., CON-
FIG KPROBES, CONFIG UPROBES) have been activated
since Android 9.0. Therefore, BPFDex doesn’t necessitate
any modifications to the Android system or the app under
scrutiny. This architecture ensures minimal additional kernel
overhead. In essence, the eBPF programs are solely tasked
with monitoring app’s behaviors and dumping data from
memory, while packer recognition and data resolution are
delegated to other modules operating outside the kernel.

Specifically, BPFDex first analyzes the packed apk to gener-
ate a hook configuration, which includes behavior monitoring
points and data collection points (i.e., events) based on the
apk’s methods, classes, and native libraries. Subsequently,
BPFDex launches the packed app and initializes eBPF pro-
grams with the hook configuration to execute tracing. The
eBPF programs comprise a series of probe handlers (e.g.,
kprobs and uprobes) that are triggered by events specified in
the hook configuration. While tracking the packer’s behaviors,
the eBPF programs extract data from the app’s virtual memory
and store it in a memory region within the kernel space.
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Fig. 2. A simplified example of the hook configuration.

Finally, the data processing module receives and processes the
data from the eBPF programs to produce valid reassembled
Dex files and monitoring reports, which include the packer’s
packing behaviors.

If malware gains root access, it can easily bypass BPFDex
by exploiting kernel calls or loading malicious modules.
However, in scenarios where an app lacks root privileges, it
becomes significantly more difficult for malware to disable
eBPF or detect BPFDex. Gaining root access is generally
beyond the capabilities of typical apps, a presumption sup-
ported by Google’s implementation of various strategies to
secure the Android system’s kernel [38], along with smart-
phone manufacturers’ adoption of multiple techniques to
reinforce the kernels of their customized Android systems
[39], [40].

Theoretically, uprobes can be detected by identifying break-
points within the .text segment of a library. However, this
method is impractical for several reasons. Scanning for break-
points requires a comprehensive examination of the .text
memory section of the library file, necessitating continuous
scanning of each instruction to identify breakpoints. This
approach introduces substantial overhead, especially when an
application must examine numerous library files. Moreover, if
the scan is limited to only the start and end points of a function
to minimize overhead, strategically placing breakpoints within
the body of the function or inserting dummy instructions
at either end can effectively conceal the breakpoints. An
alternative detection method involves inspecting the mmap,
but this can be bypassed by hiding the mmap file. Therefore,
uprobes remain a robust method for unpacking, even in the
face of these detection techniques.

B. Packer Analysis

To unpack an app efficiently, BPFDex first analyzes the apk
to identify the packer. For each specific packer, BPFDex deter-
mines monitoring and data collection points (i.e., functions) to
track, generating a hook configuration with specific event (e.g.,
Dex parsing) information for eBPF programs. This means
that instead of using static unpacking approaches, BPFDex
can adapt to the evolution of packers by adopting different
strategies for unpacking apps. Furthermore, for packers with
identical features, the program uses the same hook configura-
tion to expedite the unpacking process.

1) Packer Recognition: Despite the various methods pack-
ers use to pack apps, a packer typically employs a similar
strategy to protect different apps, such as dynamically
releasing bytecode and detecting emulators. This suggests that
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different apps have similar packing features in their methods,
classes, and native libraries when packed by the same packer.
Therefore, we generate features (i.e., ) for known packers
by integrating packing features extracted from the packed
apps, including methods (f,,), classes (f.), and native libraries
(f) (.e., eq. 1). When analyzing a packed app, we identify
the packers of the app by calculating the similarity (i.e.,
S (Fg, F))) between the packing features (F,) and the features
(Fp) of each known packer. In eq. 2, F,,, F;, F] denote
the features of a packer or app associated with methods,
classes, and libraries respectively, while w, (w. > 0 and
w1 +ws+wjs equals 1.) represents the weight of an item, which
can be tuned based on the significance of features. Note that
these weights prioritize features for better packer characteri-
zation, not for differentiation among packers. Our experiments
(See IV-B1.) demonstrate that features of native libraries are
more important in packer recognition as packers iterate. If
the similarity S(F,, F),) > 0, we consider the app as packed
by packer p. If the app is not similar to any known packers,
we classify it as an unknown packer. To ensure that the
similarity between different packers is zero, we extract features
with strong discriminative power. For example, Figure 2
(Lines 2-16) illustrates the features of the Tencent packer.
These features consist of six items: one method, two classes,
and three native libraries. For the method, “TxAppEntry”
serves as the entry method for the packer, and the prefix
“Tx” is derived from the Pinyin abbreviation of Tencent’s
Chinese name. This uniquely identifies the packer as belonging
to Tencent. Similarly, the classes also reflect the packer’s
identity. The library names are unique to Tencent’s packer,
so we include these as part of the library features.

F=f,Ufuf (D
|[Fe N FP|
S Fa,F” - -m_ "~
( ) =w A
|F¢n FE| |FfﬁFlp|
Wy —= w3 2
|F?| IF}|

To enhance the accuracy of packer recognition, we eliminate
overlapping feature items to ensure feature uniqueness if they
exist in multiple packers’ features. Additionally, we dynam-
ically update packers’ features during unpacking to improve
compatibility. Specifically, packers may have multiple versions
with slight differences in implementation. When encountering
an unknown packer, we manually identify it. If the features
of the unknown packer belong to a known packer, we add the
new features to the known packer. Otherwise, we consider the
unknown packer as a new type and add its features to our
database.

2) Hook Configuration Generation: We use hook config-
uration to leverage the programmability of eBPF. The hook
configuration comprises a sequence of monitoring and data
collection points (i.e., events) that allow eBPF programs to
track the packed app. These events, which include two types
- kprobe and uprobe, are defined according to the packing
strategies. The kprobe is used to monitor system calls made
by the packed app, while the uprobe detects the invocation
of the Android framework API and the Android system’s
native libraries. Correct hook points enhance the efficiency and
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effectiveness of unpacking, leading us to generate hook config-
urations that target packers with varying features. For instance,
Fig. 2 shows a simplified hook configuration aimed at the Ten-
cent packer. In this scenario, to monitor the packer’s actions
of opening files and mapping memory files, we employ the
kprobe to hook the kernel functions, specifically do _sys open
and mmap. Additionally, we use the uprobe to hook the native
function OpenMemory in /system/lib/libart. so at offset
0x00d7250 of the 1ib file. The OpenMemory function controls
the parsing and loading of Dex files in the native layer, and
it includes the memory address and size of the target Dex file
as its first and second arguments, respectively. Therefore, we
can hook the OpenMemory and extract these two arguments
to dump the dex data from the memory.

To generate an effective hook configuration, we manu-
ally scrutinize the monitoring reports to filter the correct
monitoring and data collection points. We eliminate points
that yield little or no valid data to decrease the kernel
payload produced by BPFDex. Moreover, when encountering
an unknown packer, BPFDex will implement an initial hook
configuration, which involves adding all possible events to the
hook configuration.

C. Monitoring and Data Collection

This module has three parts: initialization, monitoring and
data collection. To execute monitoring and data collection,
BPFDex first initializes the eBPF programs, including obtain-
ing the addresses of functions and attaching the kprobe and
uprobe to specified events involved in the hook configuration.
Once specified events are observed, BPFDex proceeds to
record packer’s behaviors and collect data from the memory
by using eBPF helpers.

1) Initialization: In the initialization phase, BPFDex parses
the events from the hook configuration to enable the uprobe
track the system native library functions. BPFDex achieves
this by constructing a mapping between these functions and
their address in the memory. To elaborate, BPFDex obtains
the memory map information about the loaded system native
libraries from the memory map (i.e., /proc/pid/maps) of
the Zygote process. Subsequently, BPFDex disassembles the
library files by using objdump [42] and extracts the symbols
and offsets of the functions. In particular, BPFDex gets the file
offset (F,) of each function, the base virtual memory address
(V) of Zygote process, and the virtual memory offset (F ) of
the native library files. Once all data is established, BPFDex
calculates the virtual memory address (V,) of each function
using eq. 3. In the final step, BPFDex loads the eBPF programs
to the kernel and attaches the kprobe to the raw syscalls and
the uprobe to the events as per the established map. The eBPF
programs can directly monitor raw syscalls by specifying
kprobes’ names, and track system native functions by attaching
uprobes to the function addresses with their symbols.

Ve=Vb+Ff+F0 3)

Given the fact that eBPF programs operate within the kernel,
it’s important to ensure they don’t cause any harm to it.
This is where the eBPF verifier comes into play, meticulously
examining eBPF programs before they’re loaded into the
kernel. The safety of these programs is ascertained through a
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two-step process. The first step involves a Directed Acyclic
Graph (DAG) check, which disallows loops and conducts
other Control Flow Graph (CFG) validations [44]. This step
is particularly adept at detecting programs with unreachable
instructions. Following this, the second step commences from
the first instruction and explores all possible paths. It simulates
the execution of each instruction, observing the changes in the
state of registers and stack. If the eBPF programs fail to meet
the safety requirements, the eBPF verifier steps in, halting
the loading process to safeguard the kernel. This ensures that
BPFDex poses no potential harm to the kernel.

2) Monitoring: Each eBPF program includes probe han-
dlers that monitor kernel-level events with low overhead.
Specific events can trigger these handlers, which run in the
kernel. When particular events are observed, the probe han-
dlers filter the event information to determine its relevance.
When the event information relates to the app under analysis,
the probe handlers process it according to predefined require-
ments, which include recording event details and collecting
memory data. This ensures that no resources are wasted on
irrelevant events. After processing all events, eBPF programs
in the kernel send encoded data and a message through the
perf buffer to notify event handlers to perform the necessary
follow-up actions. The event handlers in user space receive
the filtered event data from the kernel, parse and store it for
subsequent analysis in the data processing module, and provide
feedback to the probe handlers via BPF maps.

Since different apps share system native library functions,
they may also trigger the observed events. This is irrele-
vant for unpacking the app and will make BPFDex wrongly
treat behaviors of other apps as behaviors of the app under
analysis. To address this, BPFDex gets the source (i.e.,
UID) of the calling process observed by the eBPF pro-
grams. Therefore, BPFDex can concentrate on monitoring
behaviors and collecting data originating from the app under
analysis, significantly reducing kernel overhead. In detail,
the Android system assigns a unique UID to each user
app during installation, which remains unchanged until the
app is uninstalled. So BPFDex lets the eBPF programs
record the UID value when specific events are observed by
using bpf get current uid _gid, an eBPF helper provided by
Linux kernel, and stores the UID to the kernel memory.

In addition, since the packer calls a sequence of functions
to release valid Dex bytecode, this sequence provides useful
information for the data processing module to identify packing
behaviors. Thus, BPFDex adds timestamps to the observed
events information and sorts the events information in the data
processing module according to their timestamps. In specific,
the eBPF programs call the eBPF helper bpf ktime get ns
to get the running time when specific events are triggered and
store it along with events information in the kernel memory.

3) Data Collection: Monitoring packers’ behaviors is ben-
eficial for understanding their mechanisms and identifying
correct tracking points, but it’s insufficient for unpacking
apps. The data collection process retrieves Dex data from
memory, which the data processing module later reassembles
into Dex files. Packers utilize a series of system methods
and functions, which contain significant Dex information as
parameters, to parse and load the released Dex data. Therefore,
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our focus is on capturing these parameter values of methods
and functions invoked by the packed app. BPFDex directs the
eBPF programs to retrieve memory data into kernel memory
at runtime, primarily through two methods.

First, BPFDex employs PT REGS PARM* [45], a series
of macros provided by Linux kernel, to capture parameter val-
ues. For example, the second parameter of system native func-
tion OpenMemory is the size of a Dex file in the unsigned
int type. Consequently, we use PT REGS PARM?2 to get
the size information of Dex files when the function is
invoked by the packed app. Second, if the parameter value
we get is a base address of memory data, BPFDex fetches
the data from this base address. Specifically, BPFDex uses
bpf probe read user, an eBPF helper provided by the ker-
nel, to read memory data in user space starting from the based
address. For instance, the first parameter of OpenMemory
is the base address of a Dex file in the unsigned char*
type. BPFDex first uses PT_REGS PARMI to capture the
parameter value, then relying on the base address and the
file size, BPFDex uses bpf probe read user to retrieve the
in-memory Dex file when the packer invokes OpenMemory.
Additionally, for Android framework methods, when meth-
ods at specific addresses are called, BPFDex captures the
parameter values through the memory address according to
the pre-built map.

For the kernel’s safety and efficiency, the access amount
of kernel memory for eBPF programs is limited to
MAX BPF_STACK, which is 512 bytes by default in the current
Linux kernel version [25]. Unpacking apps requires substantial
data transfer between kernel and user space, which exceeds
the kernel memory limitation for eBPF programs. Therefore,
BPFDex utilizes BPF maps, an interface provided by the Linux
kernel, to store and read data between kernel and user space
efficiently. The BPF map [46] stores data in a key-value format
in the kernel without amount limitation, which can be shared
by different eBPF programs in both kernel and user space.

D. Data Processing

The data processing module of BPFDex accepts runtime
data retrieved by eBPF programs for analyzing packing behav-
iors. This analysis is then clearly outlined in the subsequent
monitoring report. Upon identifying specific packing behav-
iors, BPFDex modifies the monitoring and data collection
points within the hook configuration of certain packers. This
strategic adjustment allows BPFDex to adeptly adapt to the
evolving nature of packers and enhances the overall efficiency
and effectiveness of unpacking. Furthermore, BPFDex can
reassemble Dex data collected from various points into valid
Dex files, which are then verified through apk static analysis
tools [20], [27], [47], [52].

1) Anti-Unpacker Behaviors: One of the main challenges
faced by unpackers is the counteractions of packers. Packers
prevent the dumping of Dex data and, upon detecting the
presence of unpacking tools, shut down the apps to hinder
unpacking. Therefore, BPFDex focuses on monitoring the
anti-unpacker behaviors of packers to better understand their
mechanisms and improve other unpacking tools. We conducted
an analysis of more than 3k apps, which are provided by
a prominent security company with a similar dataset size
to other studies [18], [24], including custom packers and
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eight different commercial packers. We identified six types of
anti-unpacker behaviors: emulator detection, anti-debugging,
anti-DBI frameworks, system library hooking, time delay
checking, and root detection. As summarized in Table I, we
list the monitored methods and functions used to identify
anti-unpacker behaviors. The notation PARM* indicates that
BPFDex records the *th parameter value of the called function,
while methods and functions without PARM* denote that
BPFDex only records their invocation. BPFDex determines
if a packer exhibits specific behavior based on whether the
parameter value satisfies certain conditions or if certain func-
tions are called. It’s important to acknowledge the continuous
evolution of packers, which complicates the comprehensive
collection of all anti-unpacker behaviors and identification
criteria. But we have endeavored to gather as many as
possible.

(OEmulator Detection (EUD): Packers often prevent them-
selves from running in emulators, which are commonly used
for dynamic analysis of Android apps (e.g., QEMU). To
achieve this, packers compare system information between real
devices and emulators. Emulators often have unique device
fingerprints—like fixed phone numbers, X86 CPU architec-
ture, or unknown device vendors—which packers identify
by calling Android framework APIs (e.g., TelephonyMan-
ager) to fetch device hardware information. Packers also
examine the existence of emulator-specific system files (e.g.,
/proc/tty/drivers and /system/bin/qemu-props).

Identification Criteria: BPFDex tracks the app’s calls to
system information functions and evaluates library function
(e.g., open, strstr) parameters to discern if the packer inspects
system properties’ values to detect the emulator.

@Anti-Debugging (ADB): Packers usually call isDebug-
gerConnected to detect debuggers. And since a process can be
attached by only one another process at a time, packers invoke
ptrace to determine whether the app is attached by other
process. Moreover, packers detect the presence of debugger
via examining process status of the app and default debugger
TCP port by checking system files (e.g., /proc/self/status
and /proc/net/tcp).

Identification Criteria: BPFDex checks if the app has
called isDebuggerConnected (gDebuggerConnected in native)
or ptrace. It also checks if the app has read process informa-
tion to search for a debugger by examining library function
parameters (e.g., open and strstr).

®Anti-DBI Frameworks (ADF): DBI frameworks [15],
[16], [53] are commonly used to instrument Android apps.
Packers inspect suspicious installed packages by invoking
PackageManager APIs and comparing installed packages with
common DBI frameworks. Given that DBI frameworks intro-
duce artifacts (e.g., jar files) to memory, packers examine the
memory map through system files (e.g., /proc/pid/maps) to
locate files associated with DBI frameworks. Additionally, as
some DBI frameworks open specific TCP ports to connect to
DBI servers, packers check the TCP port state through system
files (e.g., /proc/net/tcp) to match default DBI framework
ports.

Identification Criteria: BPFDex identifies suspicious val-
ues (e.g., frida) in system function parameters (e.g., open and
strstr) that may indicate DBI framework fingerprints.
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TABLE I
THE RULES OF IDENTIFYING ANTI-UNPACKER BEHAVIORS

Anti-unpacker Type Monitored Methods and Functions

Behaviors

libc.__system_property_get

Emulator Detection (or libc.__system_property_read)

libc.open (PARMI1)

libc.strstr (PARM2)

Obtaining device’s information and comparing it with
special values.

libart.gDebuggerConnected

Determining whether the app is being debugged.

Anti-Debugging libe ptrace

Determining whether debuggers attach to ptrace.

libc.open (PARMI1)

libc.strstr (PARM2)

Checking debugger processes and status of apps via
system files.

Anti-DBI Frameworks | —oc-open (PARML)

libc.strstr (PARM2)

Detecting DBI frameworks by inspecting installed packages
and runtime context.

Tibe.dlsym (PARM2)

Locating actual memory address of the target function.

System Library Hooking 7z - 0 o (PARMT & PARMZ)

Making code segments writable to enable hook.

libc.gettimeofday

Time Delay Checking (or libe.time)

Checking additional delay introduced by dynamic analysis.

libc.execvp (PARM1 & PARM2)
(or libc.execvpe)

Executing commands that require root privileges like su.
Executing mount to check writable access of mounted system
directories.

libc.__system_property_get

Root Detection (or libc.__system_property_read)

Checking device properties like ro.debuggable
ro.secure and ro.build.tags.

libc.access (PARM1)
(or libc.open (PARM1))
libc.strstr (PARM2)

Matching rooting apps, and root binaries.

! The notation PARM?* indicates that BPFDex records the *th parameter value of the called function, while methods and functions
without PARM#* denote that BPFDex only records their invocation.

2 The functions strcmp, strcasecmp, strncmp, strncasecmp, and strstr share similar functionalities, enabling them to be interchangeable.

3 The functions open, openat, fopen, freopen, and fdopen possess similar functionalities, allowing for interchangeability among them.

@®System Library Hooking (SLH): Unpackers generally
use system library functions (e.g., open and write) to analyze
packed apps and extract Dex data. Packers can prevent this by
hooking related functions in system libraries (e.g., libart.so
and libc. so) using GOT/PLT hooking or inline hooking [10].

Identification Criteria: If packers attempt to hook system
library functions, they typically locate the symbols of the
target functions in memory and modify the access permissions
of the memory region of system libraries. BPFDex tracks
parameter values of dlsym to determine if the app is trying to
locate sensitive functions (e.g., write). It also monitors memory
region values of the mprotect function, controlling memory
regions’ access permissions, to check if the region involves
system libraries.

®Time Delay Checking (TDC): Packers may infer they
are being analyzed through dynamic analysis tools if they
detect additional time delays. Dynamic analysis slows down
app execution, and packers calculate the time spent executing
a specific task to detect these delays [54].

Identification Criteria: Packers typically invoke system
library functions (e.g., gettimeofday) at least twice to get the
start and end times of a specific task. BPFDex monitors these
function invocations to check if they are called consecutively.
Additionally, we append additional seconds to the return value
during the second invocation. Should the app crash, this
accounts for any potential time delays within the app.

©®Root Detection (RDT): Many unpackers necessitate root
access to facilitate unpacking via hooking or other strategies.
Consequently, packers frequently employ various techniques
to avoid operating on rooted devices. A common method
involves executing shell commands. For example, packers
verify the execution capability of the su command, which

typically resides in rooted systems. Packers also scrutinize
the  permissions of mounted system  directories
(e.g., /system/bin) that may be writable on rooted devices.
This is done by invoking the mount command to inspect
directory access. Moreover, packers examine distinct system
properties (e.g., ro.build.tags) that signify whether the
systems are rooted. They further detect a root environment by
identifying rooting apps (e.g., magisk) using PackageManager
APIs, and verifying the existence of root binaries
(e.g., /system/xbin/su).

Identification Criteria: To identify shell commands,
BPFDex monitors exevcp calls to discern whether the com-
mand includes sensitive commands and suspicious parameters.
Given that the library function _ system_property get and
__system__property _read can directly fetch rooted system
properties, BPFDex watches for such invocations to detect
root detection behaviors. Furthermore, BPFDex tracks access,
and strstr to inspect the matching of rooting apps and root
binaries.

2) Unpacking Apps: In order to retrieve Dex files from
packed Android apps, BPFDex firstly gathers dynamically
released Dex data from pre-set data collection points as
specified in the hook configuration. Secondly, it reassembles
Dex items to form Dex files and repairs the obtained Dex
files. The validity of these Dex files is then confirmed by
decompiling them using available static analysis tools.

@®Dex Collection Points: Given that all Dex data must be
parsed by ART before use, we designate key Dex data reso-
lution points for BPFDex as our default Dex data collection
points. These include Dex file parsing, class defining, method
resolving, and method interpreting stages of the entire Dex
data loading process. As outlined in Table II, BPFDex gathers
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TABLE I

THE DEX DATA COLLECTION POINTS AND THEIR
CORRESPONDING EVENTS

Category | Methods and Functions Events

DexFile::DexFile
Dex DexFile::Open Loading and parsing

Metadata | DexFile::OpenMemory Dex files.
DexFile::OpenFile
ClassLinker::DefineClass | Defining classes.
ArtMethod.::LoadMethod Resolving and linking

Dex Items | ClassLinker::LinkCode methods.
gﬁ:zzzg;lttglhni;lf ! Interpreting methods.

two types of Dex data from memory: the metadata (e.g.,
size and address) of in-memory Dex files and the Dex items
(e.g., classes and methods) of Dex files. We group these Dex
data collection points by their processed Dex data type and
related events.

To load Dex files, ART first parses the target files,
each referred to by a DexFile object containing the Dex
file’s metadata. We can therefore collect related informa-
tion when ART parses Dex files. Specifically, ART employs
DexFile::OpenFile to open file system Dex files and Dex-
File::Open, DexFile::OpenMemory, and DexFile::DexFile to
parse Dex files mapped into memory. BPFDex, in turn, moni-
tors these functions to gather Dex files’ metadata and retrieves
Dex files from memory based on this metadata.

Recognizing that many unpackers use a one-pass unpacking
strategy to retrieve dynamically released Dex data, BPFDex
collects scattered Dex items for further reassembling into Dex
files. This is because packers may replace original Dex items
(e.g., class _def item and code item) with blank data
and dynamically recover them or modify ART runtime objects
(e.g., Class and ArtMethod) to evade unpacking. According
to ART runtime, ART uses ClassLinker::DefineClass to create
Class objects that represent classes in Dex files, and for
methods in each class, ART utilizes ArtMethod::LoadMethod
and ClassLinker::LinkCode to resolve and link them. Post
parsing, ART employs ExecuteSwitchImpl or ExecuteGotoImpl
(i.e., the goto-based and switch-based interpreters) to interpret
the bytecode of methods stored in CodeItem objects. We thus
select these methods and functions as BPFDex’s default Dex
item collection points.

For a new packer, BPFDex defaults to collecting data from
all Dex collection points. If no valid data are observed at
specific collection points, BPFDex removes those points from
the packer’s hook configuration.

@Dex Files Reassembling and Repairing: To reassemble
Dex items into valid Dex files, BPFDex first logs the memory
address of the dumped Dex items and Dex files that are used by
ART to generate runtime objects. Post data collection, BPFDex
calculates each Dex item’s file offsets based on the memory
address relation between the Dex files and Dex items. BPFDex
then fills the dumped Dex files with Dex items, locating them
through file offsets.

Moreover, many packers alter the header of in-memory Dex
files to hinder searching or decompiling. As such, BPFDex
repairs the header of obtained Dex files (e.g., magic number,
checksum, and signature) according to their content.
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After reassembling and repairing the Dex files, BPFDex
employs Apktool to validate the output Dex files. If the output
Dex files can be successfully decompiled, we consider them
valid.

IV. EVALUATION

We implemented BPFDex utilizing approximately 7k lines
of C/Python code and 2k lines of Java code, leveraging eadb
[50], an eBPF Android debug bridge which grants inter-
faces for accessing eBPF functionalities on Android devices;
bee [30], a toolkit for creating efficient kernel tracing and
manipulation eBPF programs. We deployed BPFDex on two
platforms: a Pixel 6 device, running Android 13.0 with the
5.10.107 Android kernel, and an Android emulator, func-
tioning on Android 7.1 with the 5.15.0 Linux kernel. We
choose a recent version and an older version to demonstrate
the versatility and compatibility of BPFDex across different
generations of Android.

In the following section, we aim to evaluate BPFDex’s pro-
ficiency and performance. We have formulated the subsequent
research questions to guide our assessment:

e RQ1: Does BPFDex accurately identify popular com-
mercial packers and generate hook configurations for a
specific packer?

e RQ2: Can BPFDex effectively restore the original Dex
files from packed apps and outperform other existing
unpacking tools?

e RQ3: Can BPFDex enhance other unpacking tools by
exposing the anti-unpacker strategies of packers?

¢ RQ4: Does BPFDex aid malware detection by facilitating
static analysis tools?

e RQ5: Is the overhead introduced by BPFDex within
acceptable limits?

A. Data Set

We evaluate BPFDex using two distinct data sets. The first
set (D-1) comprises 240 packed apps accompanied by the
corresponding Dex files. Initially, we randomly downloaded 40
different open-source apps from F-Droid [56], none of which
were packed. To verify BPFDex’s effectiveness at different
times, we divided the 40 apps into two equal parts. We
uploaded the first 20 apps to VI popular online commercial
packing service vendors (i.e., Ali [57], Baidu [58], Bangcle
[59], Tjiami [60], Qihoo [61], and Tencent [62]), which are
commonly used in research [8], [10], [18], [29], in Nov.
2022 (P-22) and uploaded the remaining 20 apps in Jul. 2023
(P-23). This yielded 240 packed apps, which is similar in size
to other studies [10]. We only used these 6 packing services
because several online commercial packing service providers
(e.g., Kiwi [63], Naga [64], Testin [65]) discontinued their
public packing services after September 2022.

The second set (D-2) comprises 1,123 malware samples,
which were packed by eight known packers (i.e., Ali, APKPro-
tect [66], Baidu, Bangcle, Ijiami, Kiwi, Qihoo, Tencent) and
custom packers, supplied by a prominent security company.
It’s noteworthy that these samples, mostly gathered between
2018 and 2023, may be packed by multiple versions of the
same packer.
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Fig. 3. The similarities between different versions of each packer at different
weight settings.

B. Packer Analysis

In this experiment, we apply apps that are packed by
various commercial packers to evaluate whether BPFDex can
effectively identify packers and then generate a corresponding
hook configuration.

1) Packer Recognition: Initially, we select an app packed
by six commercial packers from both P-22 and P-23 to
generate features for each commercial packer. Subsequently,
we cross-recognize apps in P-22 and P-23. In other words, we
use features generated from P-22 to recognize packers in P-23,
and vice versa. Furthermore, we manually label the packers of
200 apps in D-2 and employ BPFDex to identify these apps
using features generated from P-22 and P-23. We conduct this
experiment using the mechanism outlined in III-B with a series
of distinct feature weight settings.

For clarity, we present the results of five distinct feature
weight settings to illustrate the general trend in similarity
between different version of a same packer. The experimental
results depicted in Fig. 3 demonstrate that BPFDex can
effectively identify these six commercial packers. Additionally,
the similarities between different versions of each packer vary
significantly at different feature weight settings. Generally,
the similarities increase when the native library feature has
a higher weight but decrease when the opposite is true. This
suggests that the native libraries are instrumental in recog-
nizing packers. Packers typically implement packing code by
introducing additional native libraries to the target apps, and
the entry classes and methods for invoking these libraries are
often concealed or obscured. Moreover, packers tend to modify
packing methods and classes but leave native library features
intact across different versions. Importantly, the similarities
between different packers are zero, indicating that we have
extracted unique features for each packer.

2) Hook Configuration Generation: We evaluate BPFDex’s
ability to correctly generate the hook configurations using
the latest packers in P-23. The primary task of generating
hook configuration involves identifying data collection points
for specific packers. According to our experiment, all six
packers execute their code in the native layer and dynamically
release the Dex data into memory at runtime. Ali, Baidu, and
Qihoo dynamically release valid Dex files before invoking the
function DexFile::DexFile, while Bangcle and Tencent do so
prior to calling the function DexFile::OpenMemory. Therefore,
BPFDex tracks these functions as data collection points for the
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aforementioned packers. Conversely, [jiami releases Dex files
with blank Dex items when creating the DexFile objects, sub-
sequently modifying the CodeItem before the ART resolves
methods. As such, BPFDex tracks DexFile::DexFile and Art-
Method::LoadMethod as data collection points for Ijiami.
The experimental result shows that BPFDex can accurately
generate hook configurations based on the packer recognition
result.

Answer to RQ1: BPFDex can effectively identify popular
commercial packers in packed apps and generate a correspond-
ing hook configuration for the app under analysis.

C. Recovering Dex Files

To assess the effectiveness of BPFDex in retrieving Dex
files, we examined its performance on apps from both D-1
and D-2 datasets. Our findings are then compared with results
from other open-source unpackers.

1) Unpacking Outcomes: With the source apps of six
commercial packers in D-1 at our disposal, our first step
was to deploy BPFDex on the D-1 apps. This allowed us
to compare the recovered Dex files with the original ones,
gauging BPFDex’s efficiency. Post-unpacking, a suite of static
analysis tools, namely Baksmali [52], IDA Pro [20], Jadx
[27], and JEB [47]—each using distinct Dex file verification
methods—was employed. The goal was to authenticate the
recovered Dex files and to discern the disparities between the
decompilation outcomes of the original and recovered Dex
files.

Our trials revealed that BPFDex adeptly retrieves valid Dex
files from apps safeguarded by notable commercial packers,
including the likes of Ali, Baidu, Bangcle, and Tencent. For
apps fortified by Ijiami, BPFDex’s capability was restricted
to retrieving Dex data from executed methods. This limita-
tion stems from the packer’s dynamic release of Dex data
in method granularity, altering code item during method
execution. Furthermore, the Qihoo packer’s method of recon-
stituting app functions using native code means that BPFDex
can only retrieve the Dex files that were not converted to native
code. It’s pivotal to highlight that this issue remains unsolved
by any existing unpacker.

Expanding our evaluation, BPFDex was applied to the 1,123
apps in D-2. With the assistance of various static analysis
tools, the integrity of the recovered Dex files was confirmed.
BPFDex displayed competence in effectively unpacking all
apps, with every Dex file being seamlessly disassembled.

2) Comparison: A parallel investigation was executed
using three renowned open-source unpackers from both the
research and industrial sectors: BlackDex [33], DexHunter
[12], and FRIDA-DEXDump [35]. Table III captures the com-
parative results, revealing that these unpackers faced myriad
challenges. Specifically, BlackDex struggles to unpack apps
protected by Bangcle, Ijiami, and Qihoo, due to targeted pro-
cess checks, and also falters with apps from Tencent because of
inappropriate Dex data collection timing. FRIDA-DEXDump
is hindered by DBI framework checks when unpacking apps
from Bangcle and Ijiami. It also faces issues with apps
from Qihoo and Tencent due to ill-timed Dex data collec-
tion. DexHunter’s methodology, which involves embedding
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TABLE III

UNPACKING RESULTS COMPARISON OF BPFDEX, BLACKDEX,
DEXHUNTER AND FRIDA-DEXDump

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

TABLE V

COMPARISON OF SENSITIVE API CALLS IN PACKED MALWARE VERSUS
RECOVERED DEX FILES

Packer Ali  Baidu Bangcle Ijiami Qihoo  Tencent
Unpacker
BPFDex v v v v! v? v
BlackDex[33] v v x x x x
DexHunter[12] v x X X X X
FRIDA-
DEXDump[35] v v x x x x

! The packer Ijiami only releases the Dex data of methods that need to be
executed, thus BPFDex can only recover these Dex data.

2 The packer Qihoo reimplements methods of packed apps through native
code, thus these Dex data can’t be recovered because they will never be
released into the memory.

TABLE IV

DETECTION OF ANTI-UNPACKER BEHAVIORS IN COMMERCIAL PACKERS
AND THEIR PROPORTION IN D-2

Ali  Baidu Bangcle Ijiami  Qihoo  Tencent Ratio in D-2
EUD % v x v x x 248/1123 (22.1%)
ADG % v v v v x 475/1123 (42.3%)
ADF % v v v v v 217/1123 (19.3%)
SLH x x v v x x 387/1123 (34.5%)
™DC % x x v v x 269/1123 (24.0%)
RDT % x v v X x 292/1123 (26.0%)

unpacking code into runtime functions by directly amending
AOSP, could only penetrate apps shielded by Ali.

Answer to RQ2: BPFDex exhibits proficiency in recover-
ing Dex files from packed apps, outshining other unpackers
such as BlackDex, DexHunter, and FRIDA-DEXDump in
performance.

D. Discovering Anti-Unpacker Behaviors of Packers

Using BPFDex, we identify the anti-unpacker behaviors
of the apps in D-1, as summarized in the left section of
Table IV. The “X* symbol indicates that the behavior was not
detected in the packer, while the “v”” symbol signifies that the
behavior was detected. Additionally, the right section presents
the ratio of anti-unpacker behaviors detected by BPFDex for
the malicious apps in D-2.

1) Commercial Packers: Both Baidu and Ijiami packers
employ emulator detection, thwarting analysis in emulators.
Their detection relies on inspecting system property values
such as ro.product.model. [jiami further examines specific
files, such as /proc/tty/drivers, to detect Qemu.

Anti-debugging mechanisms are prevalent in Baidu, Bang-
cle, Ijiami, and Qihoo packers. Baidu and Ijiami, for instance,
utilize Debug.isDebuggerConnected to identity JDWP-based
debuggers [67]. Bangcle and Qihoo, on the other hand,
refer to the /proc/self/status system file, relying on the
TracerPid value to determine debugging status.

Several packers, including Baidu, Bangcle, Ijiami,
Qihoo, and Tencent, incorporate anti-DBI techniques.
They probe the /proc/self/maps system file to

identify files like frida-agent-32.so, edxp.jar, and
app process32 xposed mapped in memory. Additionally,
Qihoo scans installed apps to pinpoint DBI frameworks and

Packer Ali APKProtect Qihoo

Numer of apps 29 2 63 38 40 2 389 518 20

PA in avrage 0.00 5.50 0.87 1.82 0.25 9.00 0.58 1.22 2.75

RA in avrage 18.85 9.50 15.66 8.47 10.10  16.00 16.71 13.19 8.89
Difference +18.85 +4.00 +14.79 +6.65 +9.85  +7.00 +16.13  +11.97 +6.14

Baidu  Bangcle Ijiami  Kiwi Tencent ~ Custom

decompiles target apps’ dex files in search of suspicious Java
classes.

Packers Bangcle and Ijiami utilize system library hooking.
Bangcle, for instance, intercepts system functions such as read
and write from libc.so to secure Dex data. Concurrently,
Ijiami hooks _  android log buf write from 1iblog.so to
prevent unauthorized log access.

[jiami and Qihoo packers implement time delay checks in
their code to monitor the execution time of specific native
tasks, capping it at one second.

Root detection mechanisms are evident in both Bangcle and
Ijiami. They inspect system properties, like ro.debuggable,
using _ system_property get. Notably, Ijiami examines
paths related to rooting apps and checks for specific processes,
including su and su_ daemon.

2) Anti-Unpacker Behaviors in Malicious Apps: In our
analysis of D-2’s malicious apps, all six anti-unpacker
behaviors were identified. Anti-debugging and system library
hooking emerged as predominant. However, while many apps
leverage root detection, time delay checks, and emulator
detection, the use of anti-DBI frameworks is less frequent
among them.

Answer to RQ3: BPFDex is proficient in uncovering the
anti-unpacker tactics of packed apps, thereby aiding unpackers
in adjusting to the evolving defenses of packers.

E. Enhancing Static Analysis With BPFDex

To assess the effectiveness of BPFDex in enhancing static
analysis, we started by analyzing the 1,123 malware in D-2,
taking these results as our reference point. Subsequently, we
utilized BPFDex to unpack the malware, performing the same
static analysis on the extracted Dex files. It’s worth noting
that numerous static analysis tools [68], [69], [70], [71], [72]
identify malicious apps by detecting sensitive API calls. As
such, we employed Androguard, a static analysis tool proven
effective in other studies [41], [49], to determine the number
of sensitive API calls in both the packed malware and the
recovered Dex files.

Table V displays the findings, with PA and RA denoting the
count of sensitive API calls in packed apps and the related
recovered Dex files, respectively. The data reveals that the
recovered Dex files of the malicious apps, after unpacking
with BPFDex, unveil a higher number of sensitive API calls.
This has potential implications for improving the precision
of Android malware detection. To illustrate, while malware
packed by entities like Ali, Baidu, Ijiami, and Qihoo initially
exhibit few to no sensitive APIs, a significant number emerge
in the associated recovered Dex files.

Answer to RQ4: BPFDex enhances static analysis tools for
malware detection by revealing concealed details in Dex files.
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Fig. 4. Geekbench results (high score means high performance).
F. Overhead

The overhead from BPFDex primarily stems from three
operations: eBPF probe tracing, register access, and memory
data reading. To measure the impact of these operations, we
configure BPFDex to execute either a single operation or a
combination of these operations within a single test. Note that
register access and memory data reading cannot be performed
in isolation. Since many dynamic analyses and unpacking
procedures rely on emulators, we compare a QEMU-based
Android emulator running Android 7.1 with BPFDex, both
running on the same host machine. In our evaluation, we
execute the benchmark tests provided by Geekbench 2 [73]
ten times. Our focus is on the average scores for integer,
floating point, crypto, and memory, as well as the overall
scores determined by Geekbench. All tests are conducted on
a Linux host with an Intel i5-10400 CPU and 16GB RAM.

The results from Geekbench are illustrated in Fig. 4. We
use the scores from BPFDex with all functions disabled as our
baseline (represented by the Base bar). Activating the probe
tracing function shows minimal impact on performance, as
represented by the probe bar. This trend is consistent when
the register accessing function is added (i.e., the Probe + Reg
bar). However, introducing the memory data reading function
(represented by the Probe + Reg + Mem bar) results in a
roughly 10% slowdown. In contrast, the emulator’s perfor-
mance, which reaches only about a third of the Base score, is
represented by the EMU bar.

Answer to RQS: Utilizing kernel characteristics, BPFDex
introduces minimal overhead when tracking and monitoring

apps.

V. DISCUSSION

The limitations of BPFDex are primarily fourfold.

The requirement for root privileges to load eBPF code into
the Android kernel is a constraint. As a workaround, integrat-
ing BPFDex within the system image could eliminate the need
for device rooting, since BPFDex operates autonomously with-
out additional permissions. Moreover, BPFDex’s kernel-space
execution means it remains undetectable to apps lacking root
access. It is important to note that our framework is intended
for research purposes, particularly in controlled environments
like malware detection and analysis. We do not recommend
its deployment in production environments, such as Google’s
Android ecosystem, where security, stability, and performance
considerations are paramount. Therefore, while our framework
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offers value in specific research contexts, we do not advocate
for its widespread adoption in end-user devices.

BPFDex’s reliance on dynamic analysis presents an inherent
challenge: it may not execute all instructions of the target apps,
potentially overlooking unexecuted Dex data. This issue, often
inadequately addressed in other studies [36], [37], [75], typ-
ically involves alterations to the AOSP, leading to significant
system overhead and increased crash probability. To address
this, future iterations will incorporate automated app testing
tools, like Monkey [74], to ensure more comprehensive app
execution.

The evolving nature of packers and their corresponding
anti-unpacker tactics also poses a risk of evasion, which
is a challenge inherent to all packers. We plan to enhance
BPFDex’s detection capabilities by amassing a broader set of
rules and employing machine learning algorithms to recognize
emerging patterns.

BPFDex currently does not monitor Java methods or the
parameters of the Android framework API, as this requires
deconstructing Java class data in memory. This aspect is
designated for future investigation.

VI. RELATED WORK

The dynamic nature of Android packers, designed to obfus-
cate malicious payloads, has prompted extensive research
[12], [18], [21], [22], [23], [75] and industrial efforts [33],
[34], [35], [36], [37]. Yet, the continual evolution of packers
outpaces the static unpacking strategies employed by tools
like DexHunter [12] and AppSpear [22], leading to their
diminished effectiveness. Solutions such as ReDex [75] impose
substantial overhead by executing each app method com-
prehensively. Others, including Packergrind [18], DexX [21],
FRIDA-DEXDump [35], dumpDex [34], adapt to the changes
in packers to some degree but depend on detectable techniques
like Dynamic Binary Instrumentation (DBI), Virtual Machine
Introspection (VMI), or system modifications, making them
vulnerable to sophisticated anti-unpacker defenses. DeepAu-
toD [76] innovatively integrates a deep learning model into
the malware detection process after unpacking. However, it
still relies on system image modification to perform the
unpacking of apps. In contrast, BPFDex can effectively bypass
detection of packers and adjust unpacking strategies according
to observed packing behaviors.

Parema [29] innovatively addresses the challenges posed
by VM-based Android packers by introducing a learning-
based unpacking framework capable of reconstructing original
code semantics. Nevertheless, its effectiveness relies on the
availability of representative training samples or access to
source-level virtual machine semantics. Moreover, since it
specifically targets VM-based packers, it is not applicable to
conventional packing techniques.

Hardware-assisted methods have also been explored for
enhanced program debugging and tracing on both x86 and
ARM architectures. They utilize advanced features such as
the Performance Monitoring Unit (PMU) and Embedded Trace
Macrocell (ETM). For example, Ninja [55] employs TrustZone
alongside PMU and ETM for secure amd transparent appli-
cation tracing. Similarly, hardware-assisted tracing has been
applied to Android unpacking, with Happer [10] utilizing ETM
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TABLE VI
COMPARISON OF RELATED WORK

Category Tool/Method Focus/Approach Strengths Weaknesses
Proposed Method BPFDex Dynamic unpacking (eBPF) Effecm{e unpacking and Depend.s on eBPF for dynamic
adaptation unpacking
Static Unpacking DexHunter Static unpacking Focused on static analysis ;‘gﬁfi by static unpacking
Strategy — - -
. . } o Limited by static unpacking
AppSpear Static unpacking Focused on static analysis methods
DexX Dynamic unpacking Adapts to changes in packers Dep;nds on DBI, VML, system
. . modifications
System Modification Comprehensive app method
ReDex Dynamic execution pr ) pp Imposes substantial overhead
execution
DeepAutoD Dynamic unpacking Integrates deep learning for Depends on DBI, VMI, system

malware detection

modifications

DBI

FRIDA-DEXDump

Dynamic unpacking

Unpacking apps with dynamic
instrumentation

Vulnerable to sophisticated
anti-unpacker defenses

Depends on DBI, VMI, system

Packergrind Dynamic unpacking Adapts to changes in packers modifications
dumpDex Dynamic unpacking Unpaokmg apps with dynamic Vu!nerable to so;?hls‘tl?ated
instrumentation anti-unpacker defenses
o . Learning-based unpacking for | Effectively recovers code semantics | Not suitable for standard (non-VM)
VM-based Packer Parema VM-based Android packers from VM-protected apps packers
Hardware-based Ninja Hardware-assisted tracing TrustZone for secure tracing Efficiency boﬁtlenecks due to ETM
Analvsis (TrustZone, PMU, ETM) stream analysis
alysis H Hardware-assisted ETM for traci K ivit Network security risks due to ETM
apper tracing (ETM) or fracing packing activity stream analysis
NCScope Real-time detection Real-time malware detection Limited to real-time detection
eBPF-based Analysis P with eBPF with eBPF -
. Real-time detection Real-time malware detection . . .
BPFroid with eBPF with eBPF Limited to real-time detection

to observe packing activity and adaptively select unpacking
strategies. However, Happer’s dependence on ETM stream
analysis via an online host computer introduces efficiency
bottlenecks and network security risks. BPFDex can run and
process data on real devices, thus avoiding complex data
transfers and improving the efficiency of unpacking.

The eBPF technique has recently been integrated into
Android malware analysis. Tools like NCScope [24] and
BPFroid [32] leverage eBPF for real-time detection and anal-
ysis of malicious native code. Contrasting these applications,
BPFDex innovatively applies eBPF to the domain of Android
unpacking, analyzing packers and collecting runtime data to
extract hidden Dex files and identify anti-unpacker tactics.
Notably, BPFDex pioneers the use of eBPF in the field of
Android unpacking.

Comparison of related work is shown in Table VI.

VII. CONCLUSION

To address the challenge of unpacking Android appli-
cations obfuscated by sophisticated packers, we introduced
BPFDex, a cutting-edge kernel-based unpacking tool. BPFDex
employs eBPF to monitor packing processes and memory data
efficiently, significantly minimizing overhead. It successfully
unpacks applications protected by various packing mecha-
nisms, discerns anti-unpacker behaviors, and thereby enhances
the static analysis of Android malware.
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