
CoCo: Efficient Browser Extension Vulnerability Detection via
Coverage-guided, Concurrent Abstract Interpretation

Jianjia Yu
Johns Hopkins University

Baltimore, MD, USA
jyu122@jhu.edu

Song Li†
Zhejiang University

Hangzhou, Zhejiang, China
songl@zju.edu.cn

Junmin Zhu†
Shanghai Jiao Tong University

Shanghai, China
junmin.zhu@sjtu.edu.cn

Yinzhi Cao
Johns Hopkins University

Baltimore, MD, USA
yinzhi.cao@jhu.edu

ABSTRACT

Extensions complement web browsers with additional functional-
ities and also bring new vulnerability venues, allowing privilege
escalations from adversarial web pages to use extension APIs. Prior
works on extension vulnerability detection adopt classic static anal-
ysis, which is unable to handle dynamic JavaScript features such
as those function calls as part of array lookups. At the same time,
prior abstract interpretation focuses on lightweight server-side
JavaScript, which often cannot scale to client-side extension code
due to object explosions in the abstract domain.

In this paper, we design, implement and evaluate a novel, coverage-
driven, concurrent abstract interpretation framework, called CoCo,
to efficiently detect vulnerabilities in browser extensions. On one
hand, CoCo parallelizes abstract interpretation with concurrent
taint propagation for each branching statement, message passing
and content/background scripts to detect vulnerabilities with im-
proved scalability. On the other hand, CoCo prioritizes analysis that
increases code coverage, thus further detecting more vulnerabili-
ties. Our evaluation shows that CoCo detects at least 43 zero-day,
exploitable, manually-verified extension vulnerabilities that cannot
be detected by state-of-the-art works. We responsibly disclosed all
the zero-day vulnerabilities to extension developers.

CCS CONCEPTS

• Security and privacy→ Browser security.

KEYWORDS

JavaScript, Browser Extension, Security

ACM Reference Format:

Jianjia Yu, Song Li†, Junmin Zhu†, and Yinzhi Cao. 2023. CoCo: Efficient
Browser Extension Vulnerability Detection via Coverage-guided, Concur-
rent Abstract Interpretation. In Proceedings of the 2023 ACM SIGSAC Con-

ference on Computer and Communications Security (CCS ’23), November

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3616584

26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3576915.3616584

1 INTRODUCTION

Browser extensions are personalized add-ons written in JavaScript
to native browsers to boost native browsers’ functionalities. Popular
browser extensions are often installed by millions of users for daily
usage. For example, Grammarly [6] provides grammatical sugges-
tions for its users, and Google scholar [5] provides quick searches
and citations of academic papers. Because browser extensions need
to provide additional functionality close to the native browser, they
often have a higher privilege than the normal website visited by
web users. For example, browser extensions may send cross-origin
requests beyond the restriction enforced by the same-origin policy
and access browser-only storage such as bookmarks and browsing
history. Such privileged APIs need to be protected from normal
web pages in preventing privilege escalations.

To enforce such protection, modern browser extension archi-
tecture, particularly Google Chrome, adopts a so-called isolated
world [1] to separate scripts (called background or more recently
replaced by service workers in manifest V3) having access to privi-
leged APIs from those (called content scripts) that are close to the
potential adversary, i.e., the web page. Scripts from these twoworlds
communicate with each other via a message-passing channel. While
such an architecture greatly reduces potential vulnerabilities, still
the communication between two types of scripts will lead to the
access of privileged APIs and data as shown in many real-world
vulnerabilities [4, 11] in the wild.

Researchers have been working on the detection of privilege es-
calations. On one hand, prior works [14, 35, 55] that detect browser
extension vulnerabilities propose using static analysis that tracks
dataflow between adversary-controlled inputs (e.g., a message sent
to the background script) and a privileged API. Specifically, Em-
PoWeb [55]—the first work of its kind in modern extension vul-
nerability detection—combines call graph analysis and manual in-
spection to find hundreds of vulnerable extensions. A follow-up
work called DoubleX [35], improves the static analysis performed
by EmPoWeb with an Extension Dependence Graph (EDG) for more

†The two authors contribute to the paper when they are either studying or interning
at Johns Hopkins University.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3576915.3616584
https://doi.org/10.1145/3576915.3616584

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jianjia Yu, Song Li, Junmin Zhu, & Yinzhi Cao

accurate yet automated detection. However, neither work is able to
handle dynamic JavaScript features, such as function calls that are
resolved dynamically (e.g., funcs[name]() where name is another
variable).

On the other hand, recent advances in server-side vulnerability
detection [39, 42, 43, 46] use abstract interpretation to resolve afore-
mentioned dynamic JavaScript features. For example, ODGen [43]
interprets Node.js packages in an abstract domain, called Object
Dependence Graph, and queries the graph for dynamic object res-
olution. However, existing server-side JavaScript abstract inter-
pretation is single threaded, which cannot detect vulnerabilities
related to concurrency features of client-side extensions, such as
isolated worlds and message passing. Furthermore, while abstract
interpretation itself is promising, it often cannot scale especially
given the size and complexity of client-side browser extension code.
One common issue is that the number of objects explodes in the
abstract domain, which prevents abstract interpretation from even
reaching vulnerable code, thus leading to many false negatives.

In this paper, we design a novel, coverage-guided, concurrent
abstract interpretation framework, called CoCo, on a graph-based
abstract domain to efficiently detect browser extension vulnerabili-
ties using static analysis. The key insights of CoCo are two-fold as
suggested by the two “Co”s in its name. On one hand, CoCo par-
allelizes abstract interpretation with concurrent taint propagation
by converting each branching statement, asynchronous callback
functions, and content/background scripts with message passing
into multiple threads to better detect vulnerability with improved
scalability. For example, the concurrent taint analysis propagates
taint information among different threads across message passing,
to detect browser extension vulnerabilities. Specifically, CoCo mod-
els and maintains event loops to iterate through callback functions
for content and background scripts while keeping track of taints.
Then, CoCo also simulates message passing between content and
background scripts and propagates taint information across scripts
during concurrent abstract interpretation.

On the other hand, CoCo prioritizes abstract interpretation for
unseen code to maximize code coverage, thus further increasing
the number of detected vulnerabilities. Specifically, CoCo allocates
analysis time to each thread based on the branching level and past
performance in increasing code coverage. That is, CoCo allocates
more time to a thread if it either analyzes more code or is located on
a top-level branch. Then, CoCo preempts a thread after it uses up
its allocated time. Furthermore, because the number of threads and
abstract domain states could be exponential given many branching
statements in a target extension, CoCo merges the abstract domain,
particularly the graph representation, of these different threads
after the conditional statement to reduce the number of states
and threads and avoid state explosion. That is, CoCo reduces two
threads into one by keeping newly-added nodes or edges if they
exist in either thread and removing nodes or edges if they are
deleted from both threads.

We implemented a prototype of CoCo, which is available at this
anonymous repository [9]. Then, we crawled 145K+ extensions
from the Chrome extension store for evaluation. Our evaluation
shows that CoCo finds at least 43 zero-day, exploitable vulnera-
bilities that cannot be detected by prior works (e.g., DoubleX [35]
and a modified version ODGen [43], called ODGen-ext, to detect

extension vulnerabilities) and verified manually. We responsibly
disclosed all our findings to extension developers and so far have
received one confirmation. We compared CoCo with DoubleX, the
state-of-the-art extension vulnerability detection tool as well as
ODGen-ext. Our evaluation shows that CoCo outperforms both
DoubleX and ODGen-ext in terms of the number of detected vul-
nerabilities and false positives/negatives.

2 BACKGROUND

In this section, we present some background knowledge on browser
extension architecture and abstract interpretation.
Browser extension architecture. Modern browser extension
often adopts an isolation mechanism, e.g., isolated world [1] in
Chrome, to prevent scripts with a low privilege to access higher-
privilegedAPIs. For example, such isolation divides scripts in Google
Chrome (including extensions and web pages) into three types: web
page scripts, content scripts, and background (service workers in
manifest V3) scripts.

Since different scripts are isolated from each other, a communica-
tion mechanism is necessary to enable the exchange of information.
Specifically, such communication is facilitated by message passing
in browser architecture and we list the following four types of
message passing mechanisms.

• Web page↔ Content script. Web page script communicates
with content scripts via a regular postMessage channel with
addEventListener and onmessage APIs.
• Content↔ Background script. There are two types of commu-
nications between content and background scripts (or service
worker in V3). First, they can communicate via one-time requests
APIs, i.e., sendMessage and onMessage under either runtime
(content) or tabs (background). Such communication exchanges
one message at a time. Second, they can communicate via long-
lived APIs (e.g., connect and onConnect) to exchange multiple
messages.
• Web page↔ Background script. A web page can communi-
cate with a background script if permissions are declared, i.e.,
the externally_connectable field of the manifest file contains
the web page’s URL. The communication is similar to content
↔ background script in the two types with the exception that
onMessageExternal and onConnectExternal are used.
• Extension ↔ Another extension. Such a communication is

similar to web page↔ background script and enabled by default.
A whitelist can be declared in the manifest file using allowed
extensions’ IDs.

Abstract interpretation. Abstract interpretation is a technique
to approximate the execution of a given computer program upon
an abstract domain without concrete inputs. There are two types
of abstract interpretation in the literature based on the abstract
domain types, which are lattice- and graph-based. First, classic
abstract interpretation [29] adopts a lattice structure as the abstract
domain. One challenge is the over-approximation of abstract values
and thus many prior works propose optimizations, such as trace
partitioning [44, 53], to improve traditional interval analysis by
moving some statements outside a branching statement inside.

CoCo: Efficient Browser Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract Interpretation CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Second, recent works [42, 43] propose graph-based abstract in-
terpretation for vulnerability detection given efficient graph oper-
ations on the abstract domain. One challenge is scalability given
the exponential number of objects in the graph. CoCo works on
graph-based abstract interpretation to improve their scalability,
which is different from existing optimizations. That is, existing
optimization methods—which operate on a lattice-based abstract
domain—are not applicable to graph-based abstract interpretation.
Take trace partitioning for example, which merges intervals of an
abstract value. Instead, CoCo merges graphs from different threads,
which is a completely different concept. Similarly, it also remains
unknown to apply other static analysis optimizations, like loop
unrolling and object packing, for graph-based abstract domains.

3 OVERVIEW

In this section, we present an overview of CoCo with a motivating
example, a solution overview and the threat model.

3.1 A Motivating Example

We illustrate a motivating example, called AliExpress to Shopify Im-

porter, to describe the challenges of browser extension vulnerability
detection. This extension is designed to help users automatically im-
port AliExpress products’ information into another website, called
Shopify. It has a privilege escalation vulnerability, which allows
a website to escalate its privilege to the browser extension, thus
sending arbitrary third-party requests regardless of the cross-origin
header.

Listing 1 shows the vulnerable code: Line 28 in the getData func-
tion is where the vulnerability locates. The AJAX call in browser
extension is privileged, but the destination url at Line 29 is control-
lable by an adversary from a website via a message. Lines 1–6 show
the exploit code: Awebpage adversary sends a message with a cross-
origin product_url and obtains the responses. The challenges of
detecting this vulnerability are manifested in two-fold:

• Dynamic Function Call. The invocation of getData is via a dy-
namic object lookup at Lines 17–18. Specifically, say the adver-
sary provides a string "getData" in req.action like the ex-
ploit code does at Line 3. Then, the vulnerable code at Line 17
finds the index of "getData" in the actionList array at Line 9
to avoid unauthorized function calls (i.e., actionList[index]
is "getData"). Next, Line 18 looks up the function dynami-
cally via window["getData"] and invokes it with req as the
parameter. State-of-the-art extension vulnerability detection,
namely DoubleX [35], cannot find the dynamic call edge between
Line 17 and Line 24, thus skipping the data-flow edge between
req.product_url at Line 29 and the value at Line 3. The vul-
nerable extension is included in the EmPoWeb dataset [55] but
detected mostly with manual work by the author: The dynamic
call edges are also missing in their analysis, but a human expert
can identify them.
• Reachability. The invocation of getData is located in an else
branch of an if statement at Line 13, leading to a reachability
issue of static abstract interpretation. Specifically, state-of-the-
art abstract interpretation, such as ODGen [43] and ObjLupAn-
sys [42], stuck in the if branch (Lines 13–15) for this specific
extension because of state explosion. Therefore, they cannot

1 // exploit code located in a web page
2 var editorExtensionId="cfbodcmobhpfbjhbennacnanbmpbcfkd"
3 chrome.runtime.sendMessage(editorExtensionId , {action: "getData"

, product_url:"https :// appfreaker.com/"},
4 function(response) {
5 console.log(response)
6 });
7
8 // vulnerable extension code
9 var actionList = ["addProduct", "getData"];
10 chrome.runtime.onMessageExternal.addListener(
11 function(req , caller , res) {
12 if (req.hasOwnProperty("action")) {
13 if (actionList.indexOf(req.action) == -1) {
14 // dealing with invalid actions
15 } else {
16 //call the callback with request and caller data
17 var index = actionList.indexOf(req.action);
18 res({"result": window[actionList[index]](req)});
19 }
20 } else {
21 // dealing with no actions
22 }
23 })
24 function getData(req) {
25 var result = {};
26 var product_url = req.product_url;
27 result["product_url"] = req.product_url ;;
28 $.ajax({ // privileged escalation for sending AJAX request

bypassing SOP
29 url: req.product_url ,
30 type: "get",
31 async: false ,
32 success: function(resdata) {
33 result["data"] = resdata;
34 result["status"] = 'success ';
35 },
36 error: function(resdata) {
37 result["data"] = resdata;
38 result["status"] = "error";
39 }
40 });
41 result["message"] = "The application is running";
42 return result;
43 }

Listing 1: A Motivating example: AliExpress to Shopify

Importer (Sink function is at Line 28; an adversary can send

privileged AJAX requests bypassing same-origin policy)

even reach Line 17 to resolve the aforementioned dynamic call
edge.

3.2 Solution Overview

We describe an overview of CoCo in detecting the vulnerability of
our motivating example in Listing 1. From a high-level perspective,
CoCo finds a data flow from a user input (i.e., the req object at Line
11) to a sensitive function (i.e., the url parameter of the $.ajax
function at Line 28) and finally to the user again (i.e., the parameter
of the res at Line 18, which is provided by the user at Line 11).

Now let us describe how CoCo solves the aforementioned chal-
lenges. First, CoCo resolves the dynamic call edge at Line 18 via
looking up objects in the abstract domain. That is, CoCo first re-
solves index as 1, then fetches actionList[index] as "getData",
and finally looks up the getData function via window["getData"].
All the information is stored in the abstract domain as nodes and
edges.

Second, CoCo solves the reachability issue by scheduling ab-
stract interpretations of different branches in parallel and allocating
analysis time by priority values associated with code coverage. Let
us use Listing 1 for the explanation. CoCo analyzes two branches
of the if statement at Line 13 in two threads in parallel. That is,
CoCo switches between the analysis of Line 14 and Lines 17–18

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jianjia Yu, Song Li, Junmin Zhu, & Yinzhi Cao

Table 1: A list of sensitive sink APIs modelled by CoCo.

(Note that AJAX requests in content scripts are not consid-

ered sensitive, because their content scripts are subject to

the same origin policy according to a new change [2].)

Consequences Detailed APIs

Code execution eval, tabs.executeScript, setTimeout, setInterval

AJAX requests ajax (not content scripts), fetch, get, post, XML-
HttpRequest().open

File downloads downloads.download

Storage access

- Cookie cookies.get, cookies.getAll, cookies.set

- Bookmark/history bookmarks.getTree, bookmarks.create,
history.search, history.getVisits

- Other storage

topSites.get, management.getAll,
management.setEnabled,
storage.local.get, storage.sync.get,
storage.local.set, storage.sync.set,
storage.local.clear, storage.sync.clear,
localStorage.clear, localStorage.setItem

based on an analysis interval. Say CoCo is stuck in a for loop or a
recursive call in the if branch at Line 14. Because the code coverage
stays mostly the same, CoCo boosts the priority of the else branch
(Lines 17–18), which resolves the dynamic call edge between Line
18 and Line 24.

3.3 Threat Model

Our threat model assumes two parties: an adversary and a victim.
The adversary is a webpage or another browser extension, which
tries to exploit the victim browser extension’s vulnerability via
two methods. First, the adversary may send messages to the victim
extension via message-passing APIs documented in Section 2. Sec-
ond, the adversary may trigger DOM events that are listened to by
the victim extension. For example, the adversary dispatches a new
customer event registered by and listened to by the content script
of the victim extension by a callback to trigger the vulnerability.
The victim is a browser extension that may have a vulnerability.
From the high level, our in-scope vulnerabilities can be summa-
rized as privilege escalation, i.e., the adversary manipulating the
invocation of a privileged API in the victim extension to gain per-
missions that they do not originally have. A list of such APIs is
shown in Table 1, which follows prior works [35, 55] with addi-
tion of bookmarks.create, localStorage and a few removals, i.e.,
cross-origin requests in content scripts (which are disabled since
Chrome 85 [2]). More specifically, we describe those APIs in Table 1
below based on their consequences.

• Code execution: Such APIs allow an adversary to execute code
under the privilege of the extension. Therefore, the adversary
may access other sensitive APIs.
• Privileged AJAX requests: Such APIs allow an adversary to send

cross-origin AJAX requests, essentially bypassing websites’ same
origin policy (SOP). Note that due to new restrictions, such AJAX
request APIs are not considered for content scripts.
• File downloads: Such APIs allow an adversary to download arbi-

trary files to the user’s device, which may further hamper users’
operating systems.

Ready queue
Pop

Terminates

AST
Generator

Priority calculator

Thread creator

Thread activator

Timeout

Conditional stmts/
Events/

COCO

Results

Vulnerability
detector

Thread executor

Taint propagator

Waiting queue

Thread scheduler

Modeled Client-
side APIs

Running queue

Figure 1: Overall System Architecture of CoCo, which has

two major components: thread scheduler (coverage-driven)

and thread executor (concurrent abstract interpretation)

• Storage access: Such APIs grant either read or write access to
browser or extension storage, such as cookies, history, book-
marks, and extension’s local storage. Accessing cookies may lead
to session hijacking, session fixation, and user data tampering.
Accessing history and bookmarks may be used to track the user’s
interests and habits. Tampering with bookmarks.create may
lead to the creation of a seemingly-benign bookmark with a
malicious URL.

4 DESIGN

In this section, we start by describing the system architecture in Sec-
tion 4.1, and then present two components of CoCo in Section 4.3
and 4.2 respectively.

4.1 System Architecture

CoCo accepts the Abstract Syntax Tree (AST) of a given browser
extension and outputs whether the extension contains certain vul-
nerabilities. Figure 1 shows the overall system architecture with
two main components: thread scheduler and thread executor. The
thread scheduler is responsible for creating threads and scheduling
the thread execution based on a priority calculated based on fac-
tors such as code coverage and depth. Then, the thread executor
analyzes a code snippet using abstract interpretation and interacts
with modeled client-side APIs. The analysis mainly contains two
parts: taint propagation and vulnerability detection. That is, CoCo
propagates taint information from adversary-controlled sources
and detects whether it can flows to a sink without sanitization.

Note that the thread scheduler has full control over the thread
executor. For example, during execution, a thread can be preempted
by the scheduler and replaced with another thread. Then, when a
thread finishes execution, the scheduler merges the thread with its
parent thread for continued execution. That is, the thread executor
is responsible for the analysis and the scheduler is responsible for
prioritizing the analysis.

4.2 Thread Executor

The thread executor of CoCo abstractly interpret a given code snip-
pet and generates states (particularly, object dependence graph [43])

CoCo: Efficient Browser Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract Interpretation CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 2: Annotations of procedures, sets, constants, and con-

texts used in the operational semantics in Figure 2

Name Description

Context Context variables

Δ Mapping an object to its taint set
Σ Mapping an event to its callback
Θ Mapping a message port to its callback on receiving a message

Procedures(P) Graph operations

Φ(𝑥) Locating the object for a variable 𝑥
Λ(𝑓) Locating the corresponding event of a function 𝑓

Copy(x) Copying the 𝑥 variable
New(e) Creating a new variable for the expression 𝑒
Port(x) Creating a long-lived connection port with variable 𝑥
LkupPort(f) Finding the corresponding port for function 𝑓

Sets(S) Sets defined and used by CoCo

F Sanitization functions

Set Operation Set operation defined and used by CoCo

⊕ Δ [𝑥 ⊕ 𝑓] is to append a sanitation function 𝑓 to each of the
list [𝑡𝑠𝑘 , 𝑓𝑘1 , ..., 𝑓𝑘𝑛] in set Δ [𝑥], return the updated mapping
Δ

Variables(V) Constants/built-in functions/variables of extensions

S Sender variable, constant
R Built-in response function for simple one-time requests
* Wildcard variable

in an abstract domain. CoCo performs three main tasks in the ex-
ecutor: (i) taint propagation, (ii) vulnerability detection, and (iii)
interaction with modeled client-side APIs.

4.2.1 Taint Propagation. CoCo defines a taint as a list with the first
item as the taint source followed by a list of sanitization functions
between the source and a current object (if there is any). Specifically,
𝑥 is an object, and Δ[𝑥] maps the object 𝑥 to its taint set. Each taint
in the taint set follows the format like [𝑡𝑠𝑘 , 𝑓𝑘1 , ..., 𝑓𝑘𝑛], where 𝑡𝑠𝑘 is
the 𝑘th taint source, 𝑓𝑘1 , ..., 𝑓𝑘𝑛 are the sanitization functions. The
taint is stored together with all the abstract objects in the abstract
domain. Note that we use 𝑡𝑠𝑘 because there might exist several
taints for one given object.

First, we present different annotations of the operational se-
mantics of the taint analysis in Table 2. A state 𝜎 in CoCo’s taint
analysis is represented by a tuple (Δ, Σ,Θ), where Δ is a mapping
between objects and taint set, Σ a mapping between events and
callbacks, and Θ a mapping between message ports and callbacks.
Furthermore, we denote the update of an object 𝑥 with a taint 𝑡 as
𝑥 ← 𝑡 . That is, Δ[𝑥 ← 𝑡] means that CoCo taints the object 𝑎 with
𝑡 and updates the states. Similarly, we denote the appendment of a
sanitization function 𝑓 to a taint Δ[𝑥] as Δ[𝑥 ⊕ 𝑓]. For the reason
of space, all other annotations are listed in Table 2.

Next, we describe the taint propagation process. Figure 2 shows
the operational semantics, which can be generally classified into
three categories: basic expressions, simple one-time requests, and
long-lived connections. The latter two are two types of message-
passing mechanisms. The inference rules in the operational seman-
tics define the valid transitions of a composite piece of syntax in
terms of the transitions of its components [10]. Each inference rule
can be seen as an if-then pair where the upper part corresponds to
the if condition and the lower part corresponds to the then action.

First, let us describe the “basic expressions” in Figure 2 below:
• Taint init. This rule initializes taint variables.

Condition: The initial state of CoCo is 𝜎 , which can be repre-
sented as a tuple (Δ, Σ,Θ), the taint of source variable 𝑠𝑟𝑐 is 𝑡
(Φ(𝑠𝑟𝑐) corresponds to the 𝑡𝑠𝑘 in [𝑡𝑠𝑘 , 𝑓𝑘1 , ..., 𝑓𝑘𝑛]).
Action: The expression get_taint(𝑠𝑟𝑐) in state 𝜎 is reduced to
a new state, i.e., (Δ[Φ(𝑠𝑟𝑐) ← 𝑡], Σ,Θ), where Δ[Φ(𝑠𝑟𝑐) ← 𝑡]
denotes updating the taint of variable 𝑠𝑟𝑐 to 𝑡 .
• Property access. This rule propagates taints for property access.

Condition: The state 𝜎 is represented as a tuple (Δ, Σ,Θ). A prop-
erty of a tainted object is accessed through 𝑥 [𝑝]/𝑥 .𝑐𝑜𝑛𝑠𝑡 . CoCo
tries to resolve the property and represents the property object as
𝑝 or 𝑝𝑛𝑒𝑤 if the property can or can not be resolved, respectively.
Action: There are two cases to resolve the property access, which
are 𝑥 [𝑝] and 𝑥 .𝑐𝑜𝑛𝑠𝑡 . If the property can be resolved, CoCo does
not propagate the taint. Otherwise, if a property of a tainted
object is accessed and cannot be resolved, CoCo propagates the
taint from the object to the property object. The reason is that
if a property cannot be resolved, it is likely coming from an
adversary, e.g., a JSON object with an inner structure.
• Binary operators. This rule deals with the binary operators.
Condition: The two operands under state 𝜎 can be reduced to
two different new states. The new variable generated by the
operation is denoted as 𝑥𝑛𝑒𝑤 . CoCo updates the taint of 𝑥𝑛𝑒𝑤
with the union of the taint sets of its two operands, namely,
Δ1 [Φ(𝑥1)] and Δ2 [Φ(𝑥2)].
Action: The binary operator under state 𝑠 is reduced to a new
state with the new taint, the union of event mapping and the
union of the message port mapping.
• Function calls. This rule deals with the function calls.
Condition: The state 𝜎 is represented as the tuple as before. The
returned new variable (if any) is denoted as 𝑥𝑟𝑒𝑡 . A possible new
mapping is denoted as Δ′. The update of Δ′ is to update the
taint of 𝑥𝑟𝑒𝑡 with the union of the taints of all the parameters
appended with the called function 𝑓 .
Action: There are three cases. (i) If the function definition can
be resolved, CoCo goes into the function body so that the func-
tion call is reduced to the function body statements, e.g., binary
operators and property access. No update of taint is needed by
the function call syntax. (ii) If the function is a sanitization call
and cannot be resolved, the taint mapping Δ is updated to Δ′,
propagating the taint from the parameters to the returned ob-
ject and appending the sanitization function. (iii) If the function
definition is not a sanitization function and can not be resolved,
CoCo propagates the taint. The taint mapping updates to Δ′′.
Second, we describe taint propagation in “simple one-time re-

quests” in Figure 2, which sends a one-time JSON-serializable mes-
sage between the content script and the background script (or
service worker in V3). When analyzing sendMessage, CoCo copies
the message and propagates taints from the sender to the receiver. If
an optional callback [8] is enabled, CoCo also propagates the taint
of the message variable to the parameter of the callback function
Σ[Λ(𝑓)]. The taint propagation for sendResponse and its callback
onResponse are similar to sendMessage. Now we explain the in-
ference rules for "simple one-time requests" one by one.

• sendMessage. This rule applies to the sendMessage call.
Condition: The sendMessage function is called on the sender end.
The two parameters are the message 𝑥 and the callback function

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jianjia Yu, Song Li, Junmin Zhu, & Yinzhi Cao

Figure 2: Operational semantics of CoCo’s taint propagation during abstract interpretation

Basic Expressions

𝜎⇒(Δ,Σ,Θ),𝑡=([Φ(𝑠𝑟𝑐)])
(get_taint(𝑠𝑟𝑐), 𝜎)⇒(Δ [Φ(𝑠𝑟𝑐)←𝑡],Σ,Θ) Taint Init 𝜎⇒(Δ,Σ,Θ),𝑝𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑=Φ[𝑥 [𝑝]/𝑥.𝑐𝑜𝑛𝑠𝑡],𝑝𝑛𝑒𝑤=𝑁𝑒𝑤 (𝑥 [𝑝]/𝑥.𝑐𝑜𝑛𝑠𝑡)

(𝑥 [𝑝]/𝑥.𝑐𝑜𝑛𝑠𝑡, 𝜎)⇒if 𝑝𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 !=𝑛𝑢𝑙𝑙 then (Δ,Σ,Θ) else (Δ [Φ(𝑝𝑛𝑒𝑤)←Δ [Φ(𝑥)]],Σ,Θ) Property Access

(𝑥1,𝜎)⇒(Δ1,Σ1,Θ1),(𝑥2,𝜎)⇒(Δ2,Σ2,Θ2),𝑥𝑛𝑒𝑤=𝑁𝑒𝑤 (𝑥1 op 𝑥2),Δ′=Δ [Φ(𝑥𝑛𝑒𝑤)←Δ1 [Φ(𝑥1)]
⋃

Δ2 [Φ(𝑥2)]]
(𝑥1 op 𝑥2,𝜎)⇒(Δ′,Σ1

⋃
Σ2,Θ1

⋃
Θ2) Binary Op

𝜎⇒(Δ,Σ,Θ),𝑥𝑟𝑒𝑡=𝑁𝑒𝑤 (𝑐𝑎𝑙𝑙 𝑓 (𝑥1,...,𝑥𝑛)),Δ′=Δ [Φ(𝑥𝑟𝑒𝑡)←(
𝑛⋃
𝑖=1

Δ [Φ(𝑥𝑖)⊕𝑓])],Δ′′=Δ [Φ(𝑥𝑟𝑒𝑡)←(
𝑛⋃
𝑖=1

Δ [Φ(𝑥𝑖)])]

(𝑐𝑎𝑙𝑙 𝑓 (𝑥1,...,𝑥𝑛),𝜎)⇒if 𝑓 is resolved then (Δ,Σ,Θ) else if 𝑓 ∈ 𝐹 then (Δ′,Σ,Θ)else (Δ′′,Σ,Θ) Func Call

Simple One-Time Reqests

𝜎⇒(Δ,Θ,Σ),𝑥′=𝐶𝑜𝑝𝑦 (𝑥),𝑔=Σ [Λ(𝑓)],Δ′=Δ [Φ(𝑥′)←Δ [Φ(𝑥)]],Σ′=Σ [Λ(𝑟)←𝑟]
(𝑓 (𝑥,𝑟),𝜎)⇒(𝑔 (𝑥′,𝑆,𝑅),(Δ′,Θ,Σ′)) sendMessage 𝜎⇒(Δ,Σ,Θ),Σ′=Σ [Λ(𝑓)←𝑥]

(𝑓 (𝑥),𝜎)⇒(Δ,Σ′,Θ) onMessage-addListener

𝜎⇒(Δ,Θ,Σ),𝑥′=𝐶𝑜𝑝𝑦 (𝑥),𝑔=Σ [Λ(𝑓)],Δ′=Δ [Φ(𝑥′)←ΔΦ(𝑥)],Σ′=Σ [Λ(𝑓)←𝑛𝑢𝑙𝑙]
(𝑓 (𝑥),𝜎)⇒(𝑔 (𝑥′),(Δ′,Σ′,Θ)) onMessage-sendResponse

𝜎,𝑚=𝑁𝑒𝑤 (∗)
(𝑓 (𝑥),𝜎)⇒(get_taint(𝑚),𝑥 (𝑚,𝑆,𝑅),𝜎) onMessageExternal-addListener 𝜎

(𝑓 (𝑥),𝜎)⇒(set_sink(𝑥),𝜎) onMessageExternal-sendResponse

Long-Lived Connections

𝜎⇒(Δ,Σ,Θ),𝑝=𝑃𝑜𝑟𝑡 (𝑥),𝑔=Σ [Λ(𝑓)]
(𝑓 (𝑥),𝜎)⇒(𝑔 (𝑝),𝜎) connect 𝜎⇒(Δ,Σ,Θ),Σ′=Σ [Λ(𝑓)←𝑥]

(𝑓 (𝑥),𝜎)⇒(Δ,Σ′,Θ) onConnect-addListener

𝜎⇒(Δ,Σ,Θ),𝑥′=𝐶𝑜𝑝𝑦 (𝑥),Δ′=Δ [Φ(𝑥′)←Δ [Φ(𝑥)]],𝑝=𝐿𝑘𝑢𝑝𝑃𝑜𝑟𝑡 (𝑓),𝑔=Θ[𝑝]
(𝑓 (𝑥),𝜎)⇒(𝑔 (𝑥′),(Δ′,Σ,Θ)) postMessage 𝜎⇒(Δ,Σ,Θ),𝑝=𝐿𝑘𝑢𝑝𝑃𝑜𝑟𝑡 (𝑓),Θ′=Θ[𝑝←𝑥]

(𝑓 (𝑥),𝜎)⇒(Δ,Σ,Θ′) onMessage-addListener

𝜎,𝑝=𝑃𝑜𝑟𝑡 (∗)
(𝑓 (𝑥),𝜎)⇒((𝑥 (𝑝),𝜎)) onConnectExternal-addListener

𝜎
(𝑓 (𝑥),𝜎)⇒(set_sink(𝑥),𝜎) postMessageExternal 𝜎,𝑝=𝐿𝑘𝑢𝑝𝑃𝑜𝑟𝑡 (𝑓),𝑚=𝑁𝑒𝑤 (∗)

(𝑓 (𝑥),𝜎)⇒(get_taint(𝑚),𝑥 (𝑚,𝑝),𝜎) onMessageExternal-addListener

𝑟 . After sending the message, CoCo copies the message obj 𝑥
as 𝑥 ′ and updates the taint of 𝑥 to 𝑥 ′ by Δ[Φ(𝑥 ′) ← Δ[Φ(𝑥)]].
The function invoked upon receiving the message is fetched by
𝑔 = Σ[Λ(𝑓)]. The three parameters for the function 𝑔 are: 𝑥 ′ the
copiedmessage, 𝑆 the Sender variable, and𝑅 the built-in response
function for simple one-time requests. CoCo also updates the
mapping of the “one-time request response” event to the callback
function 𝑟 .
Action: The sendMessage function call 𝑓 (𝑥, 𝑟) under state 𝜎 is
reduced to the call of the function 𝑔 under the new state.
• onMessage-addListener. This rule applies to the message re-
ceiver.
Condition: The onMessage function is registered by addListener
and called on the receiver end upon receiving a message. Its
function parameter is the function 𝑔 in sendMessage rule. CoCo
updates the callback function mapping of the “one-time request
onMessage” event, which is mapped by Λ(𝑓).
Action: The function call 𝑓 (𝑥, 𝑟) under state 𝜎 can be reduced to
the new state with a new mapping of event and callback.
• onMessage-sendResponse. This rule applies to the response
sent from the receiver.
Condition: The sendResponse function is called from the re-
ceiver end inside the onMessage callback. The rule is similar
to the sendMessage rule: CoCo copies the message obj 𝑥 as
𝑥 ′ and updates the taint of 𝑥 to 𝑥 ′ by Δ[Φ(𝑥 ′) ← Δ[Φ(𝑥)]].
The function invoked upon receiving the response is fetched

by 𝑔 = Σ[Λ(𝑓)]. Note that since this is a one-time request, the
event-callback mapping is set to null after the messaging finishes
by Σ′ = Σ[Λ(𝑓) ← 𝑛𝑢𝑙𝑙].
Action: The function call 𝑓 (𝑥) under state 𝜎 is reduced to the call
of the function 𝑔 under the new state.
• onMessageExternal-addListener. This rule applies to the re-
ceipt of external messages.
Condition: CoCo marks the message𝑚 from an external source
as tainted.
Action: The function call under state 𝜎 is reduced to getting taint
from the wildcard variable and then calls the callback function
under state 𝜎 . Note that CoCo calls the callback function directly
to mimic the external environments.
• onMessageExternal-sendResponse. This rule applies to the
response for external messages.
Condition: CoCo treats the message sent to external as a sink.
Action: The function call 𝑓 (𝑥) under state 𝜎 is reduced to setting
the parameter 𝑥 as sink under the new state.
Third, we describe taint propagation for “long-lived message

connections”. When a connection is established, CoCo updates
Θ to include the port to the corresponding callback function on
receiving the message. Then, similar to one-time requests, CoCo
copies messages and propagates taints from the sender to the re-
ceiver for port.sendMessage. Now we explain the inference rules
for “long-lived connections” one by one.
• connect. This rule applies long-lived message connection.

CoCo: Efficient Browser Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract Interpretation CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Condition: This function is called by the party initiating the
connection. The parameter 𝑥 is connection information. The re-
turned object of the connect function is a port, which is denoted
as 𝑝 = 𝑃𝑜𝑟𝑡 (𝑥) in the rule. 𝑔 is the function from the party that
accepts the connection, fetched by 𝑔 = Σ[Λ(𝑓)].
Action: The connect function call under state 𝜎 is reduced to the
𝑔 function call under the same state.
• onConnect-addListener. This rule applies the callback func-
tion for long-lived message connection.
Condition: This function is called from the party that accepts the
connection. CoCo registers the callback function that is invoked
when a connection event is fired.
Action: The function call under state 𝜎 is reduced to updating
the mapping of event-callback of state 𝜎 .
• postMessage. This rule applies message posting after a long-
lived connection.
Condition: CoCo copies the message object and updates the taint
from the original message object to the copied one. Furthermore,
CoCo fetches the message port for the postMessage function
by 𝑝 = 𝐿𝑘𝑢𝑝𝑃𝑜𝑟𝑡 (𝑓) and fetches the corresponding callback of
the message port by 𝑔 = Θ[𝑝].
Action: The call of postMessage function under state 𝜎 is re-
duced to the call of function 𝑔 under state with the updated taint
mapping.
• onMessage-addListener. This rule applies to the receipt of a
message during a long-lived connection.
Condition: This function is called by the receiver. CoCo first
looks up the port for the function 𝑓 , then registers the callback
function on receiving the message by updating the mapping of
port 𝑝 and callback function 𝑥 by Θ′ = Θ[𝑝 ← 𝑥].
Action: The function under state 𝜎 is reduced to a new state with
the updated mapping of message port and callback.
• onConnectExternal-addListener. This rule applies the call-
back function for an external, long-lived message connection.
Condition: CoCo creates a wildcard port by Port(*).
Action: The function under state 𝜎 is reduced to the calling of
callback under the same state.
• postMessageExternal. This rule applies to external message
posting during a long-lived connection.
Condition: CoCo treats the external message posting as a sink.
Then: The postMessageExternal function under state 𝜎 is re-
duced to setting the message 𝑥 as the sink under the same state.
• onMessageExternal-addListener. This rule applies to the re-
ceipt of an external message during a long-lived connection.
Condition: CoCo treats the message from the external port as
tainted and represents it as a wildcard variable New(*).
Action: The function under state 𝜎 is reduced to getting taint
from the wildcard message and calling of callback under the
same state.

4.2.2 Vulnerability Detection. CoCo detects extension vulnerabili-
ties via three detailed steps: (i) detection of control- and data-flow
patterns, (ii) check on source-sink pair feasibility, and (iii) permis-
sion check of “manifest.json”.

First, let us start with control- and data-flow patterns. CoCo
looks for the following two types of patterns:

• Control-flow patterns. CoCo detects whether there is a control-
flow path from an adversary-controlled function to another func-
tion with high privileges. Say for example there exists a control-
flow path between chrome.storage.sync.clear() and mes-
sage listener. CoCo considers this as a privilege escalation to
access browser storage because an adversary can clear the ex-
tension’s storage.

• Control-flow and taint patterns. CoCo detects whether there ex-
ists a taint-flow to a sink’s parameter in addition to the aforemen-
tioned control-flow path. Take chrome.tabs.executeScript, a
function call used for executing scripts in the extension context,
for example. CoCo detects a vulnerability if the function call is
reachable from the control-flow and its parameter is tainted so
that an adversary can execute a script.

Second, CoCo checks the feasibility of source-sink pairs, e.g.,
ensuring that one is from the adversary and the other is from the
extension. Specifically, there are two scenarios. (i) If the source con-
tains sensitive data from browser extensions, e.g., a cookie, CoCo
checks whether the sink will be accessible to an adversary, e.g.,
an HTTP request parameter or a message callback. (ii) By con-
trast, if the source is from an adversary, CoCo checks whether
the sink is a sensitive API in the browser extension. After check-
ing the source-sink feasibility, CoCo also checks whether there is
source-sink-specific sanitization along the data flow. For example,
CoCo checks whether the user is informed of cookie access by
inspecting control-flow dependencies like an if statement with
consent-related APIs such as window.confirm: if so, the user con-
sent is considered as a sanitization.

Lastly, CoCo checks the extension’s manifest.json to see whether
all the involved APIs along the control- and data-flows have the
corresponding permission so that the adversary can launch an
attack.

4.2.3 Client-side API Modeling. CoCo interacts with a list of mod-
eled, client-side APIs during abstract interpretation, taint propaga-
tion, and vulnerability detection. Specifically, we categorize such
modeled APIs into two types: event-related and taint-related. Such
modeling is done semi-automatically. That is, CoCo has standard
function calls for each type, but the determination of API type is
decided manually.

First, CoCo maintains an event queue and a dictionary of events
and listeners for event-related APIs. When CoCo analyzes an event
and its callback function has been registered, CoCo directly creates
a thread to analyze the event’s callback function. By contrast, if the
callback function has not been registered (e.g., for a sendMessage
event), CoCo adds the event to the event queue. At the same time,
CoCo has an event loop, i.e., a special thread, which goes through
all the events in the queue: After the event callback is registered,
CoCo, particularly the event loop, will analyze the callback via
creating a new thread.

Second, CoCo models all the taint-related functions including
sources, sinks, and sanitizations. Specifically, CoCo marks corre-
sponding parameter(s) in the source function as tainted, removes
such taints from the function call return value for a sanitization
function, and reports a vulnerability if the corresponding parameter
of a sink function is tainted.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jianjia Yu, Song Li, Junmin Zhu, & Yinzhi Cao

Ready queue

Waiting queue

T2 T1

T0

T3

Preempted

Runs into branch stmts

Running queue

Completed

Waiting→Ready

Figure 3: Three queue structures (ready, running, and wait-

ing) used by CoCo and their relations (i.e., how a thread is

transferred from one queue to another)

4.3 Thread scheduler

CoCo’s thread scheduler is responsible for three tasks: (i) sched-
uling thread execution, (ii) creating threads to analyze code, and
(iii) handling inactive (or debris) threads (i.e., those finish execu-
tion). Specifically, CoCo maintains three queue structures, called
“Ready”, “Running”, and “Waiting”, as shown in Figure 3 to achieve
the goal. The ready queue is a priority queue maintaining all the
threads that are ready to be executed and will be fetched onto the
running queue. The running queue maintains a list of threads that
are currently executed by the thread executor. The waiting queue
contains threads that are waiting for other threads’ results or that
finish execution and are ready to be merged with other threads.

These three queues are connected and threads are moved among
three queues based on the aforementioned three tasks. Threads in
the ready queue are moved to the running queue by scheduling
and back to the ready queue by preemption. Then, threads in the
running queue may also be moved to the waiting queue if the
execution finishes or encounters a branching statement. Lastly,
threads in the waiting queue may be moved back to the ready
queue if it is activated. We now describe the three tasks of CoCo
in detail.

4.3.1 Scheduling. CoCo schedules threads by moving them from
the ready queue to the running queue based on a priority value.
Then, CoCo also preempts threads in the running queue and moves
them to the ready queuewith a new priority value after the allocated
time is used up. Below we describe the general scheduling criteria
of CoCo and then present a detailed, specific priority calculation
method used by CoCo.
Scheduling Criteria. CoCo follows three criteria below to sched-
ule threads.
• Scheduling Criterion 1 [new code]: The analysis of unseen code
has a higher priority than seen code. The first criterion says
that CoCo analyzes new code compared with old code that has
already been analyzed before. Consider an if statement with
two branches. The first branch calls a function that is analyzed
before, and the second branch calls another unseen function.
CoCo prioritizes the analysis of the second branch because this
branch has a higher probability of containing a vulnerability.
• Scheduling Criterion 2 [nested branches]: Given a conditional
statement and a branch of the statement, the analysis of a con-
current branch has a higher priority than another embedded
conditional statement under this branch. The second criterion
says that CoCo analyzes code on the top level compared with the

low level for nested conditional statements. The reason is that
the top level often contains more high-level semantics compared
with the low level where code is often fragmented with details.
Say there exists a complex filter in a target program that matches
inputs with multiple nested conditional statements. CoCo can
quickly skip the analysis of the filter to analyze the rest of the
program.
• Scheduling Criterion 3 [fairness]: Threads that have not been
executed for a while have a higher priority than those that are
just executed. The third criterion says that CoCo strikes a balance
among all the threads when all other conditions are the same.
The purpose of this criterion is to prevent starvation and give
every thread at least some time to execute.

Priority Calculation.We describe how CoCo calculates the pri-
ority in Equation 1 following the three scheduling criteria:

𝑃child = 𝑃parent + 𝛼 · CovInclast − 𝛽 · brDepth − 𝛾 ·𝑇last (1)

where 𝛼 , 𝛽 , and 𝛾 are coefficients, 𝑃parent the thread’s parent’s
priority, CovInclast the percentage of increased code coverage
(Criterion 1) in the last allocated time slot, brDepth the branch
depth (Criterion 2), and 𝑇last the last time (Criterion 3) that the
thread is scheduled.

4.3.2 Creation. To start, CoCo creates threads for each component
of a browser extension, i.e., content and background scripts. Then,
during analysis, CoCo gradually creates more threads for analysis
following three creation criteria.
• Creation Criterion 1 [conditional statement]: CoCo creates a
thread for each branch of a conditional statement. CoCo cre-
ates new threads for each branch of a conditional statement and
also puts the original thread in the waiting queue, which becomes
inactive and waits for the finish of branching statements. The
reason is that CoCo analyzes later branches immediately without
letting them wait for the finish of the beginning branches. Such
a creation helps CoCo reach more code as soon as possible.
• Creation Criterion 2 [event callbacks]: CoCo creates a thread
for each event callback function. CoCo creates new threads for
each event callback when they are registered. For example, when
CoCo encounters setTimeout, CoCo creates a new thread for
the callback function in its parameter. The procedure is differ-
ent for message-related events because there are two parties
involved. CoCo maintains an event queue to store all the mes-
sage events sent by sendMessage. When the onMessage listener
is registered, CoCo allocates a special thread that loops through
all the messages constantly for handling. Details are described
in Section 4.2.3. The reason for such handling of messages is
similar: CoCo can quickly reach new code that is embedded as
part of event callbacks.
• Creation Criterion 3 [sequential statements]: CoCo may create
threads for sequential statements if they are dataflow indepen-
dent and the preceding statement is complex to analyze (e.g.,
the analysis time exceeds a threshold). This is a special, rarely-
happened case. Say there are two statements separated by a
comma. The first statement takes very long to analyze, e.g., it is
an Immediately Invoked Function Expression (IIFE) [3]. CoCo
will create a thread for the second statement assuming that there
are no data dependencies. Later on, if the first statement modi-
fies an object read by the second statement, CoCo will abort the

CoCo: Efficient Browser Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract Interpretation CCS ’23, November 26–30, 2023, Copenhagen, Denmark

execution of the second statement. The reason for Criterion 3 is
also to skip complex analysis and reach vulnerability locations.

4.3.3 Thread Activation and Merging. The purpose of activation is
to bring threads in the waiting queue back to the ready queue after
branching. There are three different policies for such activation to
merge different threads.
• [Policy 1] CoCo moves the parent thread from the waiting state
to the ready state once one of its created threads terminates.
• [Policy 2] CoCo moves the parent thread from waiting state to
ready state when all of its created threads terminate.
• [Policy 3] CoCo creates a copy of the parent thread, and moves

the original parent thread from waiting state to ready state once
one of its created threads terminates. Then when other branch
threads terminate, CoCo moves the copied parent thread to the
ready state.
When CoCo moves a parent thread from waiting to ready, CoCo

merges the states in the graph-based abstract domains of the debris
child thread with the parent. The merge operates on the graph level
and generates a new graph based on updates in graphs of child
threads. More specifically, the merge starts from the graph of the
parent thread and then gradually adds or deletes nodes and edges.
On one hand, if an edge or a node is added by any child thread,
CoCo will add the same edge or node with the corresponding tag
marking the branch. On the other hand, if an edge or a node is
deleted by all the threads, CoCo will delete the edge or the node.
Otherwise, CoCo will mark the correct branch tag to the edge or
the node if one branch still keeps the edge or node.

5 IMPLEMENTATION AND SETUPS

Implementation. Our implementation is open-source with 4,020
lines of code, which is available at this anonymous repo [9]. Our
implementation has a pre-processing module, which analyzes man-
ifest.json and extracts all the JavaScript for CoCo to analyze. CoCo
will also include modeled client-side APIs (which are shown in
Table 1) with each analyzed file. Table 1 shows the sensitive APIs,
which are stored as easily-editable text files in CoCo. Our Abstract
Syntax Tree (AST) parser is based on an open-source tool, Esprima
(https://esprima.org/). Our implementation of the thread executor,
specifically the abstract interpretation, is based on an open-source
project, ODGen (https://github.com/Song-Li/ODGen), and its repre-
sentation of Object Dependence Graph as the abstract domain. All
the open-source code is excluded from the aforementioned Lines
of Code.
Experimental Setups. We describe our datasets and variations
of CoCo and state of the art. We prepare two datasets for the
evaluation of CoCo: one is unlabelled for zero-day vulnerability
detection and the other is labeled mostly by prior works (Dou-
bleX [35] and EmPoWeb [55]). (1) Large-scale extension dataset.
Specifically, we crawled 185,076 Chrome extensions from Chrome
Web Store in September 2021. We then exclude 20,622 empty ex-
tensions, 35 malformed extensions (one that cannot be unzipped,
33 with incorrect manifest.json, and one without manifest.json),
and 19,289 themes. (2) Vulnerable extension dataset. This dataset
contains 207 vulnerable extensions provided by prior works (Dou-
bleX [35] and EmPoWeb [55]). Specifically, the DoubleX dataset
has 184 vulnerable extensions and EmPoWeb has 73 vulnerable

extensions. There are 44 overlaps between the two datasets and the
combination of the two datasets has 213 extensions containing 256
vulnerabilities. This is because some of these extensions contain
more than one vulnerability. We manually verify the exploitability
of this combined dataset and find that six vulnerabilities are not
exploitable due to a lack of data flows, control flows, or solvable
constraints. We thus exclude these six from the dataset.

We now describe different baselines and CoCo variants used in
our evaluation. (1) DoubleX [35] is the original implementation
from the authors with the newly updated sensitive APIs in Table 1.
(2) ODGen-ext [43] is the original, sequential implementation plus
the newly client-side extension model (e.g., message passing) from
CoCo. We use ODGen-ext as another baseline because the origi-
nal ODGen only supports the analysis of Node.js modules but not
browser extensions. (3) CoCo-unguided is a variant of CoCo with-
out coverage guidance. We use CoCo-unguided for the ablation
study to understand the importance of coverage guidance.

6 EVALUATION

In this section, we evaluate CoCo and answer five Research Ques-
tions (RQs). Our evaluation is on a virtual machine with 128G
memory, 20 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz cores,
running Ubuntu 20.04.

6.1 RQ1: Zero-day vulnerabilities

In this research question, we show the capability of CoCo in
discovering zero-day vulnerabilities using the large-scale exten-
sion dataset with 185,076 extensions. Specifically, our definition of
zero-day under the paper’s context, following Wikipedia [12], is
a browser extension vulnerability that is previously unknown to
those who are interested in its mitigation. Therefore, we consider a
vulnerability found by CoCo as zero-day if it satisfies the following
two criteria: (i) The vulnerability cannot be detected by other tools,
particularly neither DoubleX or ODGen-ext. (ii) The vulnerability
is not revealed online—e.g., as a bug report, with a CVE identifier,
or in another vulnerability dataset—to the best of our knowledge
based on an extensive Google search.

In total, CoCo uniquely outputs 301 reports from our large-scale
extension dataset, which are not reported by either DoubleX or
ODGen-ext. Because of the large number, we only manually inspect
50 reports whose corresponding extensions have more than 1,000
users and find 43 zero-day vulnerabilities. A selective list (ranked
by # of users) is shown in Table 3. There are five columns in Table 3:
extension name, # of users, vulnerability type, status (i.e., whether
the vulnerability is reported or confirmed by developers), and the
exploit code. Note that CoCo detected vulnerabilities in popular
extensions (e.g., Nuance PowerMic Web Extension with more than
200K users). Take Ceibal Library Reader, an extension with 100K+
users, which allows saving the URL of the books that have been
downloaded, for example. CoCo finds a vulnerability that allows
an adversary to create a new bookmark via sending a message to
the extension.

We also show all the zero-day vulnerabilities in Table 4 with a
breakdown. Privileged storage access is the most popular one and
we further break it down into cookie, bookmark/history and other
extension storage. One reason is the large amount of APIs involved

https://github.com/Song-Li/ODGen

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jianjia Yu, Song Li, Junmin Zhu, & Yinzhi Cao

Table 3: A selective list of zero-day vulnerable extensions found by CoCo

Extension Name # of Users Vulnerability Type Status Exploit Code

Nuance PowerMic Web Extension 200,000+ Code Execution Reported
const AttackEvent = new CustomEvent("_nuca_link_request"

, {detail: {type: 0x5675, adapterURL: ";console.log(\"attack\")"}});
document.dispatchEvent(AttackEvent);

Ceibal Library Reader 100,000+ New Bookmark Creation Reported

chrome.runtime.sendMessage(
"pdjmoegkkmdbohppjcnpfcggajjniepn",
{addBookmarkUrl:"http://www.example.com",title:"1"},
function(res) {console.log(res)})

LinkedIn Email Finder – PIPILEADS 40,000+ Privileged Storage Access Reported window.postMessage({type:"PipiAuthTokenOperation",
method:"PipiAuthTokenLogin", token:"123"})

FixPlay G Server 20,000+ Extension Cookie Access Reported

chrome.runtime.sendMessage(
"foahoboefnlidmejppiibgnifpbjeknh", {type:"dv",
cookie:"hihi"}, function(res){console.log(res)})
chrome.cookies.get({url:"https://drive.google.com",
name:""DRIVE_STREAM""},(a)=>{console.log(a)})

4th Office Edit 1,000+ Privileged AJAX requests Reported
document.dispatchEvent(new CustomEvent(

"extensions_request", {detail:
{domain:"http://www.example.com"}}));

Table 4: A breakdown by vulnerability type (The list of re-

lated sensitive APIs for each type can be found in Table 1.)

and exploitable scope (i.e., any websites or those that are de-

fined in the allowlist in the manifest file)

Vulnerability Type # vulnerabilities = # exploitable by any sites +

exploitable by allowlisted sites

Code Execution 4 = 3 + 1

Privileged AJAX requests 5 = 3+2

Arbitrary File Downloads 1 = 0+1

Privileged Storage Access 33 = 12+21
- Cookie 4 = 1+3
- Bookmark/history 3 = 2+1
- Other storage 26 = 9+17

Total 43 = 18+25

in Table 1. The other is that many extensionsmay access storage like
localStorage. We also break down all the zero-day vulnerabilities
by their exploitable scope, i.e., whether they are exploitable by any
websites or those that are defined in the allowlist in the manifest file.
Overall about 41.9% of websites can be exploited by any websites
and the rest needs to be specific sites in the allowlist.

There are two major reasons that CoCo detects zero-day vulner-
abilities that are not found by prior works. First, there are many
dynamic language features, e.g., bracket syntax and promise, which
are not handled by prior works. Here we list an example of one
zero-day vulnerability from “Abcd PDF - Chrome New Tab Page”
found by CoCo in Listing 2. The vulnerability allows an adversary
to obtain the browsing history and bookmarks of the user. Specifi-
cally, the exploit code is shown in Lines 2–3. The adversary sends a
query at Line 3, which was processed by the content script at Line 5.
The content script then sends a message to the background at Line 7,
which is received at Line 18. Then, Line 21 calls the searchHistory
function at Line 27, which calls a sensitive function at Line 29 and
then sends the results back at Line 22. Then, the message listener
registered by the adversary at Line 2 receives the results. DoubleX
cannot detect this vulnerability because of the heavy involvement
of Promise and then function, leading to missing call edges of
DoubleX’s results. Such dynamic features are often the reason that
leads to missed detection of vulnerabilities by prior works such as
DoubleX and EmPoWeb. Second, there are vulnerabilities that are
triggered by complex inputs and not considered by prior works.
“Nuance PowerMic Web Extension” in Table 3 is such an example.

1 // exploit code (which retrieves browsing history)
2 window.addEventListener("message", function(msg){console.log(msg

)})
3 window.postMessage ({from:"__newtab", event:"search_history",

query:""})
4 // content_script.js
5 window.addEventListener('message ', function (e) {
6 ...
7 chrome.runtime.sendMessage(e.data , (res) => {
8 const sender = {event: e.data.event ,res: res};
9 sender.from = 'ext';
10 window.postMessage(sender , '*');
11 });
12 });
13 // background.js
14 chrome.runtime.onMessage.addListener ((request , sender ,

sendResponse) => {
15 listener(request , sender , sendResponse);
16 return true;
17 });
18 function listener(request , sender , sendResponse) {
19 switch(request.event) {
20 case "search_history":
21 searchHistory(request.query).then(res => {
22 sendResponse(res);
23 });
24 break;
25 }
26 }
27 function searchHistory(query) {
28 return new Promise ((resolve , reject) => {
29 chrome.history.search ({ text: query , maxResults: 10 }, (

res) => {
30 resolve(res);
31 });
32 });
33 }

Listing 2: A Zero-day Vulnerability Example: Abcd PDF -

Chrome New Tab Page

The exploit code of Table 3 shows that the vulnerability is triggered
by a custom event listened by the extension as “_nuca_link_request”.
Such an event is not simulated by DoubleX.

6.2 RQ2: FP and FN

In this research question, we evaluate the false positives and nega-
tives of CoCo and compare with prior works. Figure 4 shows the
Venn diagrams of the reported results (including false positives) of
all three approaches upon our large-scale extension dataset. First,
CoCo detects all the report extensions from ODGen-ext: This is
expected because the purpose of our concurrent, coverage-driven
abstract interpretation is to increase code coverage and detect more
vulnerable extensions. Second, the detection results of CoCo and
DoubleX overlap, but each approach has its unique results.

CoCo: Efficient Browser Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract Interpretation CCS ’23, November 26–30, 2023, Copenhagen, Denmark

DoubleX: 901
Est-FPR: 22.5%

CoCo: 1,374
Est-FPR: 10.9%241

Est-FPR: 4.2%

ODGen-ext: 832
Est-FPR: 12.0%

451
Est-FPR: 17.8%

301
Est-FPR: 13.3%

381
Est-FPR: 5.3%279

Est-FPR: 63.0%

Figure 4: Venn diagram of reported results (including false

positives) of CoCo, ODGen-ext, and DoubleX on the large-

scale extension dataset. We annotate the estimated False

Positive Rate (Est-FPR)—which is obtainedmanually by ran-

domly sampling 10% reports—under each number.

Table 5: A comparison of false positives (FPs) and negatives

(FNs) betweenCoCo andDoubleX. Note thatwe sampled 10%

of reports of each approach for manual verification of FPs.

Approach False Positive Rate False Negative Rate

DoubleX 20/89 (22.5%) 10/250
CoCo 15/137 (10.9%) 2/250

CoCo ∧ DoubleX 3/62 (4.8%) 10/250
¬CoCo ∧ DoubleX 17/27 (63.0%) 250/250
CoCo ∧¬DoubleX 12/75 (16.0%) 242/250
CoCo ∨ DoubleX 32/164 (19.5%) 2/250

Table 6: A comparison of false positives and negatives be-

tween CoCo and ODGen-ext

Approach False Positive Rate False Negative Rate

ODGen-ext 10/83 (12.0%) 22/250
CoCo 15/137 (10.9%) 2/250

CoCo ∧ ODGen-ext 10/83 (12.0%) 22/250
¬CoCo ∧ ODGen-ext 0/0 (0.0%) 250/250
CoCo ∧¬ODGen-ext 5/54 (9.3%) 230/250
CoCo ∨ ODGen-ext 15/137 (10.9%) 2/250

False Positives. We manually inspect the results from the large-
scale extension dataset to evaluate False Positives. Specifically, we
define False Positive Rate as FP divided by FP+TP, which indicates
the percentage of reported vulnerabilities that are incorrect. That
is, we need to spend additional manual efforts to inspect such
extensions to filter false positives. Note that our definition is based
on exploitability, i.e., we only consider a reported vulnerability TP
if it is exploitable.

Due to the large number of vulnerability reports, we manually
select 10% of vulnerability reports from each portion (i.e., CoCo,
DoubleX, and different combinations of CoCo and DoubleX) and
annotate the estimated report FPR in Figure 4. We also break down
the Venn diagrams into two comparison pairs and show results in
Table 5 (CoCo and DoubleX) and 6 (CoCo and ODGen-ext). Note
that ∧ means the detection of both approaches, ¬ means that the
followed approach cannot detect the extension, and ∨ means the
detection of either approach.

1 // only part of the URL is controlled by the attacker
2 // background.js
3 chrome.runtime.onMessageExternal.addListener(
4 (request , _, sendResponse) => {
5 getMessageDetail(request.user_email , request ,sendResponse);
6 });
7 function getMessageDetail(user_email , request ,sendResponse){
8 var xhr = new XMLHttpRequest ();
9 xhr.open("GET", "https :// gmail.googleapis.com/gmail/v1/users

/"+user_email+"/messages/"+request.messageId);
10 xhr.send(data);
11 }

Listing 3: A false positive case of CoCo: diagrams.net and

draw.io Importer

We start with Table 5 and there are several things worth noting
here. First, the FPR of CoCo is smaller than that of DoubleX. The
reason is that DoubleX often reports a vulnerability while there
is no data- or control-flow path between the adversary-controlled
input and the sink due to over-approximation. As a comparison, the
control-flow produced by CoCo is very accurate due to the adoption
of abstract interpretation. At the same time, we also illustrate an FP
case of CoCo in Listing 3. CoCo detects this extension as vulnerable
because there exists a dataflow from adversary-controlled input to
a sink, i.e., a privileged AJAX call. However, we consider this as an
FP because the adversary does not have full control over the URL,
but only the path. If the adversary provides an invalid path (e.g.,
email or message ID), the return contents will just be either empty
or an error message (like 404).

Next,¬CoCo∧DoubleX has the highest FPR, which is 63.0%. The
reason is that themajority of vulnerable extensions are also detected
by CoCo. In other words, CoCo also helps DoubleX to reduce
FPR when we compare ¬CoCo ∧ DoubleX and CoCo ∧ DoubleX
together. Similarly, the reason for FP for DoubleX comes from two
perspectives: inaccurate control flow and inaccurate data flow. By
contrast, the main reason for CoCo’s FP comes from imprecise
analysis of AJAX call destinations. Therefore, CoCo helps DoubleX
to remove such cases with inaccurate control- and data-flows with
abstract interpretation.

We then describe Table 6 and compare CoCo with ODGen-ext.
The FPR of CoCo is slightly higher than ODGen-ext and the in-
clusion of ODGen-ext will slightly increase CoCo’s FPR. We are
not sure about the exact reasons. It might be that CoCo’s unique
results are located not as deep as ODGen-ext’s results (e.g., not
within many embedded branching statements). Therefore, it is easy
to exploit such vulnerabilities.
False Negatives.We use the vulnerable extension dataset to evalu-
ate FNs. Specifically, we define False Negative Rate (FNR) as the di-
vision of FN over FN+TP, which indicates the percentage of missed
vulnerabilities. Table 5 shows the FNR of different combinations of
CoCo and DoubleX and in Table 6 the FNR of different combina-
tions of CoCo and ODGen-ext. The false negatives of CoCo are
two out of 250 on this dataset. It is worth noting that CoCo detects
all the vulnerabilities that DoubleX detects and additionally reports
eight more vulnerabilities that cannot be detected by DoubleX. That
is why ¬ CoCo ∧ DoubleX cannot detect any vulnerabilities and
CoCo ∧ ¬ DoubleX only detects eight.

Another thing worth noting is that CoCo will also sometimes
miss the detection of existing vulnerabilities, e.g., those reported by
EmpoWeb. One main reason is that some complex built-in functions
are not modelled in CoCo, which leads to under-tainting of certain

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jianjia Yu, Song Li, Junmin Zhu, & Yinzhi Cao

Table 7: Ablation Study on Concurrency and Coverage-

guided Analysis.

Approach Large-scale dataset Vulnerable extension dataset

CoCo 1,374 248
CoCo-unguided 1,077 241
ODGen-ext 832 228

objects. Examples of such functions are regular expression and
$.Deferred.

6.3 RQ3: Ablation Study

In this research question, we perform an ablation study to under-
stand how each “Co”s contributes to the analysis results of CoCo.

6.3.1 Coverage-guided Analysis. In this part, we show an ablation
study of the impacts of coverage-guided analysis by removing cov-
erage guidance from CoCo. Table 7 shows the comparison among
CoCo, CoCo-unguided, and ODGen-ext. CoCo-unguided detects
fewer vulnerabilities compared with CoCo, but more than ODGen-
ext. The reason is that CoCo-unguided often analyzes deep em-
bedded branches with repeated function calls while ignoring some
vulnerabilities that exist in the high-level branches.

6.3.2 Concurrency. In part, we show the advantage of concurrency
brought by CoCo in the analysis using an ablation study, removing
concurrency from CoCo, which essentially becomes ODGen-ext.
Specifically, we randomly pick 100 extensions, analyze them and
find that 24 of them will time out after ten minutes using ODGen-
ext. Then, we compare the code coverage (statement coverage)
of these 24 extensions with and without concurrency brought by
CoCo. We run each extension extensively with and without concur-
rency until the code coverage is stable (i.e., staying the same) after
ten minutes. Figure 5 shows the Bar Graph of the code coverage
improvement comparing CoCo and ODGen-ext. CoCo improves
the code coverage by 0% to 14% compared with ODGen-ext with a
median value of 4%. This advantage is brought by the concurrent
execution of CoCo.

We also show two examples of code coverage of ODGen-ext
and CoCo over time in Figure 6 and 7 respectively. First, the code
coverage of a ODGen-ext will increase in the beginning but then
stay stable after being stuck in analyzing old code. By contrast, the
code coverage of a concurrent analysis will increase even if one
thread is stuck with analyzing old code. Second, the code coverage
of a concurrent analysis is often below 100% even if we give CoCo
enough time. One reason is that some extensions may include dead
code: For example, if the extension developer includes a JavaScript
library, many functions in the library may not be called. This is an
advantage: even if there exist vulnerabilities in the dead code, they
cannot be exploited by an adversary. Lastly, the code coverage of
sequential analysis may be larger than that of concurrent in the
beginning as shown in Figure 7. Then, the coverage of concurrent
analysis exceeds sequential in the end. The reason is that concurrent
analysis has many threads with context switching, which may fall
behind sequential analysis in the beginning.

Lastly, we also study how Creation Criteria 2 and 3. Our experi-
ment methodology is as follows. We run CoCo without Creation
Criteria 2 or 3 upon our vulnerable extension dataset and com-
pare the number of detected vulnerabilities. Our result shows that

Creation Criterion 2 helps the detection of 19 out of 250 vulner-
abilities and Creation Criterion 3 the detection of 14 out of 250
vulnerabilities.

6.4 RQ4: Performance

In this research question, we show the performance of CoCo using
three metrics: total analysis time, # of threads, and total memory
over time. Our methodology is as follows. First, we randomly select
500 extensions from our large-scale dataset and observe the analysis
time of three approaches—CoCo, DoubleX and ODGen-ext. Figure 8
shows the Cumulative Distributional Function (CDF) of the total
analysis time of three approaches. CoCo is slightly slower than
ODGen-ext due to the setup of multiple threads and the time used
for switching between threads. Eventually, CoCo manages to finish
analyzing more extensions compared with ODGen-ext due to its
high code coverage. In the end, the number of finished extensions
of CoCo is the same as DoubleX, i.e., there are 32 extensions (6.4%)
that time out after ten minutes for both CoCo and DoubleX.

Second, we select five extensions in the aforementioned 500: two
with the longest analysis time and the other three randomly from
the 500 above. We then show the # of threads and memory overhead
over its analysis time. Figure 9 shows the number of threads over
analysis time. The number of threads starts to increase when CoCo
encounters branching statements, reaches more than 100 for one
extension, and then decreases after analyzing branching statements
formerging. In another case, the number of threads keeps increasing
due to a large number of branching statements in the extension
until we kill CoCo after the ten-minute time-out.

Lastly, Figure 10 shows the CDF of the maximum consumed
memory in the unit of mebibyte of three approaches, DoubleX,
ODGen-ext, and CoCo. The used memory of CoCo is similar to the
one used by ODGen-ext, because the main memory consumption
is the storage of the graph structure. Both ODGen-ext and CoCo
used less memory compared with DoubleX for more than 95% of
extensions because of different representations of the program
dependency graph and object dependence graph. ODGen-ext and
CoCo used more memory for the rest of 5% of extensions because
abstract interpretation will generate more nodes for some particular
program structures like recursion.

7 DISCUSSION

Responsible Disclosure. We follow standard responsible disclo-
sure procedures to inform vulnerable extension developers and give
them 45 days to fix the vulnerability before public release. That said,
we wrote emails to all the developers of the zero-day vulnerabilities
belonging to 84 extensions when we manually verified them as
exploitable regardless of whether the vulnerability is detected by
CoCo, DoubleX, or ODGen-ext. More specifically, we only find
the developers’ contact information of 39 out of 43 vulnerabilities
that are uniquely detected by CoCo as vulnerable, and make corre-
sponding reports to the developers of the 37 affected extensions. In
addition, we also find contact information of zero-day vulnerabili-
ties that are detected by either DoubleX or ODGen-ext as well and
confirmed as exploitable. Thus, we make corresponding reports to
those developers of affected extensions as well. Note that many of
these vulnerabilities reported by either DoubleX or ODGen-ext are

CoCo: Efficient Browser Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract Interpretation CCS ’23, November 26–30, 2023, Copenhagen, Denmark

0 5 10 15 20
Time (in second)

0

10

20

30

40

50

60

70

Pe
rc
en

ta
ge

 o
f c

ov
er
ed

 c
od

e
(%

)

CoCo
ODGen-ext

Figure 5: Code Coverage Compari-

son of ODGen-ext and CoCo over 24

Timed-out Extensions

0 100 200 300 400 500 600
Time (in second)

0

10

20

30

40

50

60

70

Pe
rc
en

ta
ge

 o
f c

ov
er
ed

 c
od

e
(%

)

CoCo_A
ODGen-ext_A

Figure 6: Code Coverage Increase of

CoCo vs. ODGen-ext over Time of

Zuora RBM Connect Plugin

0 100 200 300 400 500 600
Time (in second)

0

10

20

30

40

50

60

70

Pe
rc
en

ta
ge

 o
f c

ov
er
ed

 c
od

e
(%

)

CoCo_B
ODGen-ext_B

Figure 7: Code Coverage Increase over

Time of CoCo vs. ODGen-ext for a

specific extension [7]

0 100 200 300 400 500 600
Time (in second)

0

20

40

60

80

100

Pe
rc
en

ta
ge

 o
f f
in
ish

ed
 e
xt
en

sio
ns
 (%

)

ODGen-ext
CoCo
DoubleX

Figure 8: CDF of Total Analysis Time

for 500 Random Extensions

0 50 100 150 200 250 300 350
Time (in second)

0

25

50

75

100

125

150

175

of
 T
hr
ea
ds

Tenet Wallpapers HD New Tab
Harley Quinn HD Wallpapers Suicide Squad Tab
Adult & Porn blocker
TabStats
Zach Herron HD Wallpapers Why Dont We Theme

Figure 9: # of Threads vs. Analysis

Time of CoCo

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
Maximum Memory used (in MiB)

0

20

40

60

80

100

Pe
rc
en
ta
ge
 o
f e
xt
en
sio

ns
 (%

)

ODGen-ext
CoCo
DoubleX

Figure 10: CDF of Maximum Memory

for 500 Random Extensions

also detected by CoCo; that is, only four vulnerabilities belonging
to four extensions are only detected by DoubleX but not CoCo. In
the email, we describe where the vulnerability locates and how we
suggest patching the vulnerability. So far we have only received one
confirmation and unfortunately, none of the vulnerable extensions
have been fixed yet. We are still working with developers as well
as extension marketplace operators for fixes.
Manifest V3 Extensions. Recently, Google Chrome releases
Manifest V3, which makes two major changes beyond the mani-
fest file: (i) migrating background scripts to service workers, (ii)
adding additional constraints for cross-origin requests in the con-
tent scripts. CoCo is compatible with Manifest V3 extensions with
three major changes. First, CoCo supports a special parsing com-
ponent for all V3 manifest files. Second, CoCo creates a special
thread for service workers just like background scripts. Here are the
analysis results. So far, there are 3,798 extensions in our large-scale
extension dataset using Manifest V3. CoCogenerates 21 reports as
potentially vulnerable and our further manual verification shows
that 19 out of 21 are true positives.
Constraint Solving. CoCo statically finds a data path between
an adversary-controlled input and a sink function. The found path
may not be feasible due to certain control- or data-flow constraints.
This is the same as the state-of-the-art approach, particularly Dou-
bleX. Furthermore, false positives caused by a lack of constraint
solving is relatively small based on our manual checking. We leave
it as our future work to include constraint solvers in CoCo.
Soundness. CoCo is the same as all previous static analysis
of JavaScript, which is not sound. Specifically, we describe sound-
ness conditions below. First, dynamic object creation in CoCo is
sound only if all the related variables can be precisely resolved.

That is, if one variable is related to user inputs, CoCo makes an
overapproximation. Second, dynamic generation of code in CoCo
is sound only if the generated code value is resolvable. That is, if
the code generation parameter is related to user inputs, CoCo will
skip the analysis. Note that since dynamic code generation is also a
sink for code execution, the implementation choice does not affect
vulnerability analysis.

8 RELATEDWORK

Browser Extension Security. In 2007, Louw et al. [58] studied the
security issues of browser extensions and introduced an integrity-
checking mechanism to control the extensions’ installation and
loading process. In 2010, VEX [14] applied static information-flow
analysis to the browser extensions and used static flow patterns
and unsafe programming practices to highlight potential security
vulnerabilities. Later, IBEX [36] adopted Datalog and data flow poli-
cies to limit the API usage of browser extensions. Then, Carlini et
al. [26] evaluated the effectiveness of Chrome extension security
architecture by a security review of 100 Chrome extensions, and
Wang et al. [59] did a measurement study to analyze extension be-
haviors. In 2013, Sentinel [47] introduced a user-controllable policy
enforcer for the Firefox browser that gives fine-grained control to
the JavaScript Firefox extensions. In 2014 and 2015, multiple re-
searchers focused on the detection of malicious extensions and vul-
nerabilities. Hulk [40] leveraged extension-related dynamic pages
and employed a fuzzer to detect malicious extensions. Calzavara et
al. [16] proposed a formal security analysis of browser extensions
to show that message-passing APIs may lead to privilege escalation
attacks. WebEval [37] adopted dynamic analysis, static analysis,
and reputation tracking to detect malicious extensions. Onarlioglu

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Jianjia Yu, Song Li, Junmin Zhu, & Yinzhi Cao

et al. [48] investigated the security issues of the Firefox XPCOM
extension APIs and introduced methods to detect related vulner-
abilities. In 2016, researchers used static and dynamic analysis to
detect vulnerabilities and sensitive information leakage. Anil et
al. [54] extended the colluding attacks to the extension domain
and showed that the collusion between two extensions may lead to
private information leakage. CrossFire [15] adopted a multi-stage
lightweight static analyzer to detect instances of extension-reuse
vulnerabilities on top of Firefox. ExtensionGuard [27] used a cus-
tomizable dynamic taint tracker to mark the sensitive information,
and then detect information leakage during runtime.

In 2017 and 2018, there were some works studying privacy is-
sues of browser extensions. Starov et al. [56] reported a large-scale
study of privacy leakage enabled by extensions, and Ex-Ray [60]
presented a dynamic technique that was based on the network traf-
fic patterns for identifying privacy-violating extensions. Aggarwal
et al. [13] detected and defended spying extensions by using RNN
with the sequence of browser API calls. Mystique [28] used static
analysis to obtain the data-flow and control-flow graphs and modi-
fies Chromium to detect the leakage of private information. In 2019
and 2020, EmPoWeb [55] used call graph analysis to investigate how
communication-related APIs can influence the security of browser
extensions. Pantelaios et al. [51] detected malicious browser ex-
tensions through their update deltas and did a large-scale to-date
measurement study. Recently in 2021, DoubleX [35] analyzed taint
flows to detect browser extension vulnerabilities without the sup-
port of dynamic features. In 2022, Benjamin et al. [31] presented a
systematic study of attack entry points in the browser extension
ecosystem.

Note that prior works on browser extension vulnerability de-
tection either adopted dynamic analysis [16, 37], used policy en-
forcers [47, 48], or only had limited support for dynamic features [35].
General Web Security. General web security [17–20, 22–25, 49,
50, 61, 62] has been studied for many years. We start with static
analysis. Jensen et al. [38] use static analysis to detect type-related
and dataflow-related programming errors of client-side JavaScript
applications that interact with the HTML, DOM, and browser APIs.
HideNoSeek [32], JShield [21], JaSt [34], and JSTap [33] adopt
static analysis to detect malicious client-side JavaScript applica-
tions. JSIsolate [64] provides an isolated and reliable JavaScript
execution environment based on the dependency relationship of
different JavaScript program components. JAW [41] detects client-
side CSRF vulnerabilities bymodeling browser objects in the Hybrid
Property Graphs. As for dynamic analysis. Deemon [52] combines
dynamic analysis and property graphs to detect the CSRF vulner-
ability. Melicher et al. [45] and Steffens et al. [57] adopt dynamic
analysis to detect DOM-based XSS vulnerabilities. JSObserver [63]
focuses on the code integrity problem of client-side JavaScript that
is caused by global identifier conflicts. Black Widow [30], a black
box data-driven approach to web crawling and scanning, finds more
cross-site scripting vulnerabilities with no false positives.

9 CONCLUSION

In this paper, we design and implement a new framework, called
CoCo, to parallelize abstract interpretation for analyzing browser

extensions with concurrent taint analysis. Specifically, CoCo cre-
ates concurrent analysis for new branches and events and propa-
gates taints across different threads. Then, CoCo schedules analysis
to prioritize code coverage so that it can always try to reach new
code and find vulnerabilities. We evaluate CoCo using both ground
truth and real-world extension datasets and compare CoCowith the
state-of-the-art approach, DoubleX, as well as a modified version
of ODGen. Our evaluation shows that CoCo detects zero-day vul-
nerabilities that cannot be detected by state-of-the-art approaches.

ACKNOWLEDGEMENT

We would like to thank anonymous shepherd and reviewers for
their helpful comments and feedback. This work was supported in
part by National Science Foundation (NSF) under grants CNS-21-
54404 and CNS-20-46361 and Defense Advanced Research Projects
Agency (DARPA) under AFRL Definitive Contract FA875019C0006
and a DARPA Young Faculty Award (YFA) under Grant Agreement
D22AP00137-00 as well as an Amazon Research Award (ARA) 2021
and a Visa Research Award. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either
expressed or implied, of NSF, DARPA, Amazon, or Visa.

REFERENCES

[1] [n.d.]. Architecture overview. https://developer.chrome.com/docs/extensions/
mv3/architecture-overview/.

[2] [n.d.]. Changes to Cross-Origin Requests in Chrome Extension Content

Scripts. https://www.chromium.org/Home/chromium-security/extension-
content-script-fetches/.

[3] [n.d.]. Definition of IIFE. https://developer.mozilla.org/en-US/docs/Glossary/IIFE.
[4] [n.d.]. FromDocToPdf: exposes browsing history to all websites. https://bugs.

chromium.org/p/project-zero/issues/detail?id=1557.
[5] [n.d.]. Google Scholar Button. https://chrome.google.com/webstore/detail/

google-scholar-button/ldipcbpaocekfooobnbcddclnhejkcpn. [Online; Accessed
on 07-June-2022].

[6] [n.d.]. Grammarly: Grammar Checker and Writing App. https:
//chrome.google.com/webstore/detail/grammarly-grammar-checker/
kbfnbcaeplbcioakkpcpgfkobkghlhen. [Online; Accessed on 07-June-2022].

[7] [n.d.]. Kino No Tabi Backgrounds HD S Journey New Tab. https://chrome-
stats.com/d/agpijpbfbjfdahhjjigjbhfeogijlajm.

[8] [n.d.]. Message passing. https://developer.chrome.com/docs/extensions/mv3/
messaging/.

[9] [n.d.]. Open-source Repository. https://github.com/CoCoAbstractInterpretation/
CoCo.git.

[10] [n.d.]. Operational semantics (2022) Wikipedia. https://en.wikipedia.org/wiki/
Operational_semantics. [Online; Accessed on March 21, 2023].

[11] [n.d.]. Video Downloader Extension: Universal XSS. https://bugs.chromium.org/p/
project-zero/issues/detail?id=1555.

[12] [n.d.]. [Wikipedia] Zero-day (computing). https://en.wikipedia.org/wiki/Zero-
day_(computing).

[13] Anupama Aggarwal, Bimal Viswanath, Liang Zhang, Saravana Kumar, Ayush
Shah, and Ponnurangam Kumaraguru. 2018. I Spy with My Little Eye: Analysis
andDetection of Spying Browser Extensions. In 2018 IEEE European Symposium on

Security and Privacy (EuroS&P). 47–61. https://doi.org/10.1109/EuroSP.2018.00012
[14] Sruthi Bandhakavi, Samuel T. King, P. Madhusudan, and MarianneWinslett. 2010.

VEX: Vetting Browser Extensions for Security Vulnerabilities. In 19th USENIX

Security Symposium (USENIX Security 10). Washington, DC.
[15] Ahmet Salih Buyukkayhan, Kaan Onarlioglu, William K. Robertson, and Engin

Kirda. 2016. CrossFire: An Analysis of Firefox Extension-Reuse Vulnerabilities.
In NDSS 2016.

[16] Stefano Calzavara, Michele Bugliesi, Silvia Crafa, and Enrico Steffinlongo. 2015.
Fine-Grained Detection of Privilege Escalation Attacks on Browser Extensions. In
Programming Languages and Systems, Jan Vitek (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 510–534.

[17] Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang Wu. 2017. Deterministic
Browser. In CCS (Dallas, Texas, USA) (CCS ’17). Association for Computing Ma-
chinery, New York, NY, USA, 163–178. https://doi.org/10.1145/3133956.3133996

https://developer.chrome.com/docs/extensions/mv3/architecture-overview/
https://developer.chrome.com/docs/extensions/mv3/architecture-overview/
https://www.chromium.org/Home/chromium-security/extension-content-script-fetches/
https://www.chromium.org/Home/chromium-security/extension-content-script-fetches/
https://developer.mozilla.org/en-US/docs/Glossary/IIFE
https://bugs.chromium.org/p/project-zero/issues/detail?id=1557
https://bugs.chromium.org/p/project-zero/issues/detail?id=1557
https://chrome.google.com/webstore/detail/google-scholar-button/ldipcbpaocekfooobnbcddclnhejkcpn
https://chrome.google.com/webstore/detail/google-scholar-button/ldipcbpaocekfooobnbcddclnhejkcpn
https://chrome.google.com/webstore/detail/grammarly-grammar-checker/kbfnbcaeplbcioakkpcpgfkobkghlhen
https://chrome.google.com/webstore/detail/grammarly-grammar-checker/kbfnbcaeplbcioakkpcpgfkobkghlhen
https://chrome.google.com/webstore/detail/grammarly-grammar-checker/kbfnbcaeplbcioakkpcpgfkobkghlhen
https://chrome-stats.com/d/agpijpbfbjfdahhjjigjbhfeogijlajm
https://chrome-stats.com/d/agpijpbfbjfdahhjjigjbhfeogijlajm
https://developer.chrome.com/docs/extensions/mv3/messaging/
https://developer.chrome.com/docs/extensions/mv3/messaging/
https://github.com/CoCoAbstractInterpretation/CoCo.git
https://github.com/CoCoAbstractInterpretation/CoCo.git
https://en.wikipedia.org/wiki/Operational_semantics
https://en.wikipedia.org/wiki/Operational_semantics
https://bugs.chromium.org/p/project-zero/issues/detail?id=1555
https://bugs.chromium.org/p/project-zero/issues/detail?id=1555
https://en.wikipedia.org/wiki/Zero-day_(computing)
https://en.wikipedia.org/wiki/Zero-day_(computing)
https://doi.org/10.1109/EuroSP.2018.00012
https://doi.org/10.1145/3133956.3133996

CoCo: Efficient Browser Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract Interpretation CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[18] Yinzhi Cao, Song Li, Erik Wijmans, et al. 2017. (Cross-) Browser Fingerprinting
via OS and Hardware Level Features.. In NDSS.

[19] Yinzhi Cao, Zhichun Li, Vaibhav Rastogi, and Yan Chen. 2010. Virtual Browser:
A Web-Level Sandbox to Secure Third-Party JavaScript without Sacrificing Func-
tionality. In CCS (CCS ’10). Association for Computing Machinery.

[20] Yinzhi Cao, Xiang Pan, Yan Chen, and Jianwei Zhuge. 2014. JShield: Towards Real-
Time and Vulnerability-Based Detection of Polluted Drive-by Download Attacks.
In Proceedings of the 30th Annual Computer Security Applications Conference

(ACSAC ’14). Association for Computing Machinery, New York, NY, USA.
[21] Yinzhi Cao, Xiang Pan, Yan Chen, and Jianwei Zhuge. 2014. JShield: towards real-

time and vulnerability-based detection of polluted drive-by download attacks.
Proceedings of the 30th Annual Computer Security Applications Conference (2014).

[22] Yinzhi Cao, Xiang Pan, Yan Chen, Jianwei Zhuge, Xiaobin Qian, and Jian Fu. 2015.
Malicious code detection technologies. US Patent 9,213,839.

[23] Yinzhi Cao, Vaibhav Rastogi, Zhichun Li, Yan Chen, and Alexander Moshchuk.
2013. Redefining web browser principals with a Configurable Origin Policy. In
2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). 1–12. https://doi.org/10.1109/DSN.2013.6575317
[24] Yinzhi Cao, Yan Shoshitaishvili, Kevin Borgolte, Christopher Kruegel, Giovanni

Vigna, and Yan Chen. 2014. Protecting Web-Based Single Sign-on Protocols
against Relying Party Impersonation Attacks through a Dedicated Bi-directional
Authenticated Secure Channel. In Research in Attacks, Intrusions and Defenses.

[25] Yinzhi Cao, Vinod Yegneswaran, and Yan Chen. 2012. PathCutter: Severing the
Self-Propagation Path of XSS JavaScript Worms in Social Web Networks.. In
NDSS.

[26] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. 2012. An Evaluation
of the Google Chrome Extension Security Architecture. In 21st USENIX Security

Symposium (USENIX Security 12). Bellevue, WA, 97–111.
[27] Wentao Chang and Songqing Chen. 2016. ExtensionGuard: Towards runtime

browser extension information leakage detection. In 2016 IEEE Conference on

Communications and Network Security (CNS). 154–162.
[28] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Informa-

tion Leakage from Browser Extensions. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security.
[29] Patrick Cousot. 1996. Abstract interpretation. ACM Computing Surveys (CSUR)

28, 2 (1996), 324–328.
[30] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. 2021. Black

Widow: Blackbox Data-drivenWeb Scanning. In 2021 IEEE Symposium on Security

and Privacy (SP).
[31] Benjamin Eriksson, Pablo Picazo-Sanchez, and Andrei Sabelfeld. 2022. Hard-

ening the Security Analysis of Browser Extensions. In Proceedings of the 37th

ACM/SIGAPP Symposium on Applied Computing (SAC ’22).
[32] Aurore Fass, Michael Backes, and Ben Stock. 2019. HideNoSeek: Camouflaging

Malicious JavaScript in Benign ASTs. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security. Association for Computing
Machinery.

[33] Aurore Fass, Michael Backes, and Ben Stock. 2019. JStap: A Static Pre-Filter
for Malicious JavaScript Detection. In Proceedings of the 35th Annual Computer

Security Applications Conference (San Juan, Puerto Rico, USA) (ACSAC ’19). Asso-
ciation for Computing Machinery, 257–269.

[34] Aurore Fass, Robert P. Krawczyk, Michael Backes, and Ben Stock. 2018. JaSt:
Fully Syntactic Detection of Malicious (Obfuscated) JavaScript. In Detection of

Intrusions and Malware, and Vulnerability Assessment.
[35] Aurore Fass, Dolière Francis Somé,Michael Backes, and Ben Stock. 2021. DoubleX:

Statically Detecting Vulnerable Data Flows in Browser Extensions at Scale, In
ACM CCS 2021. ACM CCS.

[36] Arjun Guha, Matthew Fredrikson, Benjamin Livshits, and Nikhil Swamy. 2011.
Verified Security for Browser Extensions. In 2011 IEEE Symposium on Security

and Privacy. 115–130. https://doi.org/10.1109/SP.2011.36
[37] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis Mavrommatis, Niels

Provos, Moheeb Abu Rajab, and Kurt Thomas. 2015. Trends and Lessons from
Three Years Fighting Malicious Extensions. In 24th USENIX Security Symposium.

[38] Simon Holm Jensen, Magnus Madsen, and Anders Møller. 2011. Modeling the
HTML DOM and Browser API in Static Analysis of JavaScript Web Applications.
In Proc. 8th joint meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
[39] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis

for JavaScript. In Proc. 16th International Static Analysis Symposium (SAS) (LNCS,

Vol. 5673). Springer-Verlag.
[40] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-

vanni Vigna, and Vern Paxson. 2014. Hulk: Eliciting Malicious Behavior in
Browser Extensions. In 23rd USENIX Security Symposium.

[41] Soheil Khodayari and Giancarlo Pellegrino. 2021. JAW: Studying Client-side
CSRF with Hybrid Property Graphs and Declarative Traversals. In 30th USENIX

Security Symposium (USENIX Security 21). 2525–2542.
[42] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2021. Detecting Node.js

Prototype Pollution Vulnerabilities via Object Lookup Analysis. In ESEC/FSE ’21:

29th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering.
[43] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2022. Mining Node.js

Vulnerabilities via Object Dependence Graph and Query. In 31st USENIX Security

Symposium (USENIX Security 22). USENIX Association, Boston, MA.
[44] Laurent Mauborgne and Xavier Rival. 2005. Trace partitioning in abstract in-

terpretation based static analyzers. In European Symposium on Programming.
Springer, 5–20.

[45] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting. In Network and Distributed System Security Symposium (NDSS).

[46] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. 2019.
Nodest: Feedback-Driven Static Analysis of Node.Js Applications. In Proceedings

of the 2019 27th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE). 455–465.
[47] Kaan Onarlioglu, Mustafa Battal, William Robertson, and Engin Kirda. 2013.

Securing Legacy Firefox Extensions with SENTINEL. In Detection of Intrusions

and Malware, and Vulnerability Assessment, Konrad Rieck, Patrick Stewin, and
Jean-Pierre Seifert (Eds.).

[48] Kaan Onarlioglu, Ahmet Salih Buyukkayhan, William Robertson, and Engin
Kirda. 2015. SENTINEL: Securing Legacy Firefox Extensions. Computers &

Security 49 (2015), 147–161. https://doi.org/10.1016/j.cose.2014.12.002
[49] Xiang Pan, Yinzhi Cao, and Yan Chen. 2015. I do not know what you visited

last summer: Protecting users from third-party web tracking with trackingfree
browser. In NDSS.

[50] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and Tingzhe Zhou.
2016. CSPAutoGen: Black-Box Enforcement of Content Security Policy upon
Real-World Websites. In CCS 2016 (CCS ’16).

[51] Nikolaos Pantelaios, Nick Nikiforakis, and Alexandros Kapravelos. 2020. You’ve
Changed: Detecting Malicious Browser Extensions through Their Update Deltas.
Association for Computing Machinery, New York, NY, USA, 477–491.

[52] Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Christian
Rossow. 2017. Deemon: Detecting CSRF with Dynamic Analysis and Property
Graphs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security (Dallas, Texas, USA) (CCS ’17).
[53] Xavier Rival and Laurent Mauborgne. 2007. The trace partitioning abstract

domain. ACM Transactions on Programming Languages and Systems (TOPLAS)

29, 5 (2007), 26–es.
[54] Anil Saini, Manoj Singh Gaur, Vijay Laxmi, and Mauro Conti. 2016. Colluding

browser extension attack on user privacy and its implication for web browsers.
Computers & Security 63 (2016), 14–28.

[55] Dolière Francis Somé. 2019. EmPoWeb: Empowering Web Applications with
Browser Extensions. In IEEE Security and Privacy Symposium.

[56] Oleksii Starov and Nick Nikiforakis. 2017. Extended Tracking Powers: Measuring
the Privacy Diffusion Enabled by Browser Extensions. In Proceedings of the 26th

International Conference on World Wide Web (WWW ’17).
[57] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t

Trust The Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site
Scripting in the Wild. In NDSS.

[58] Mike Ter Louw, Jin Soon Lim, and V. N. Venkatakrishnan. 2007. Extensible Web
Browser Security. In Proceedings of the 4th DIMVA (2007).

[59] Jiangang Wang, Xiaohong Li, Xuhui Liu, Xinshu Dong, Junjie Wang, Zhenkai
Liang, and Zhiyong Feng. 2012. An Empirical Study of Dangerous Behaviors in
Firefox Extensions. In Information Security.

[60] Michael Weissbacher, Enrico Mariconti, Guillermo Suarez-Tangil, Gianluca
Stringhini, William Robertson, and Engin Kirda. 2017. Ex-Ray: Detection of
History-Leaking Browser Extensions. In ACSAC 2017.

[61] Shujiang Wu, Song Li, Yinzhi Cao, and Ningfei Wang. 2019. Rendered Private:
Making GLSL Execution Uniform to Prevent WebGL-based Browser Fingerprint-
ing.. In USENIX Security.

[62] Shujiang Wu, Pengfei Sun, Yao Zhao, and Yinzhi Cao. 2023. Him of Many Faces:
Characterizing Billion-scale Adversarial and Benign Browser Fingerprints on
Commercial Websites. In 30th Annual Network and Distributed System Security

Symposium, NDSS 2023, San Diego, California, USA, February 27 - March 3, 2023.
The Internet Society.

[63] Mingxue Zhang and Wei Meng. 2020. Detecting and Understanding JavaScript
Global Identifier Conflicts on the Web. In Proceedings of ESEC/FSE 2020 (Virtual
Event, USA). 38–49.

[64] Mingxue Zhang and Wei Meng. 2021. JSISOLATE: Lightweight in-Browser
JavaScript Isolation. In Proceedings of the 29th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering.

https://doi.org/10.1109/DSN.2013.6575317
https://doi.org/10.1109/SP.2011.36
https://doi.org/10.1016/j.cose.2014.12.002

	Abstract
	1 Introduction
	2 Background
	3 Overview
	3.1 A Motivating Example
	3.2 Solution Overview
	3.3 Threat Model

	4 Design
	4.1 System Architecture
	4.2 Thread Executor
	4.3 Thread scheduler

	5 Implementation and Setups
	6 Evaluation
	6.1 RQ1: Zero-day vulnerabilities
	6.2 RQ2: FP and FN
	6.3 RQ3: Ablation Study
	6.4 RQ4: Performance

	7 Discussion
	8 Related Work
	9 Conclusion
	References

