
Follow My Flow: Unveiling Client-Side Prototype Pollution Gadgets from
One Million Real-World Websites

Zifeng Kang, Muxi Lyu, Zhengyu Liu, Jianjia Yu, Runqi Fan∗, Song Li∗, and Yinzhi Cao
Johns Hopkins University

∗ The State Key Laboratory of Blockchain and Data Security, Zhejiang University
{zkang7, mlyu4, zliu192, jyu122, yinzhi.cao}@jhu.edu, {fanrunqi, songl}@zju.edu.cn

Abstract—Prototype pollution vulnerability often has further
consequences—such as Cross-site Scripting (XSS) and cookie
manipulation—that are achieved via so-called gadgets, i.e.,
code snippets that change the control- or data-flow of a victim
program for malicious purposes. Prior works face challenges
in finding prototype pollution gadgets for such consequences
because the control- or data-flow change sometimes needs
the injection of complex property values to replace existing
undefined ones through prototype pollution, which may not be
seen before or cannot be solved by existing constraint solvers.

In this paper, we design a dynamic analysis framework,
called GALA, to automatically detect client-side prototype
pollution gadgets among real-world websites, and implement
an open-source version of GALA. Our key insight is to
borrow existing defined values on non-vulnerable websites to
victim ones where such values are undefined, thus guiding the
property injection to flow to the sinks in gadgets.

Our evaluation of GALA against one-million websites
reveals 133 zero-day gadgets that are not found by prior works.
For example, one gadget was from Meta’s software and another
from the Vue framework. Both have acknowledged and fixed it,
with Meta rewarding us a bug bounty and Vue assigning CVE-
2024-6783. Our evaluation also shows that 23 websites with
prototype pollution vulnerabilities—which do not have further
consequences as reported by prior works—have consequences
due to gadgets found by GALA. In addition to the Meta
and Vue gadgets, we also responsibly disclosed all the zero-
day gadgets and those newly-discovered prototype pollution
consequences to their developers.

1. Introduction

Prototype pollution [1]–[3] is a relatively new type of
vulnerability, which allows an adversary to manipulate a
prototypical object property of a victim JavaScript program.
Such vulnerabilities are prevalent in the real world: Prior
work [4] has discovered thousands of top-ranked, vulner-
able websites. When a prototype pollution (vulnerability)
is present, its exploitation for malicious consequence is
usually achieved with a concept, called prototype pollu-
tion gadgets [5], [6] (or for short gadgets), i.e., a snippet
of JavaScript code starting with an (originally-undefined
property) and ending with either a consequence-related sink

or another originally-undefined property. These originally-
undefined properties are manipulated by the adversary with
injected values, thus affecting the control- or data-flow of
the victim program to achieve their malicious purpose, e.g.,
Cross-site Scripting (XSS) and Cookie Manipulation.

Prior works on detecting prototype pollution gadgets can
be categorized into two types: static and dynamic. On one
hand, Silent Spring [6], a mostly static approach (with some
dynamic components to obtain undefined values), relies on
CodeQL [7] to detect data flows between undefined prop-
erties and sinks for server-side Node.js runtime. However,
such a static approach has a large number of false positives
(FPs). Therefore, Silent Spring has to resort to manual anal-
ysis for exploit generation and filtering of FPs. Moreover,
Silent Spring only detects single but not chained gadgets.

On the other hand, researchers have proposed to use
dynamic approaches to detect such gadgets. ProbetheP-
roto [4], the only study on client-side prototype pollution
and their gadgets, adopts predefined payload as property
values, which is often rigid, leading to missed gadgets when
such values are not known before. Another work, UoPF [5]
adopts concolic execution to detect chained gadgets for
sever-side Node.js template engines. UoPF marks undefined
values as symbols and solves them using constraint solvers,
such as Z3 [8]. However, existing solvers cannot scale to
complex constraints, which often fail to provide a valid
solution within limited time. The application of UoPF upon
client-side gadgets is also unknown since a client-side con-
colic execution framework needs to be developed.

In this paper, we design a dynamic analysis framework
named GALA (Gadget Locator and Analyzer), to detect
client-side gadgets among one-million real-world websites.
Our key insight is that (while some properties are undefined
on certain websites), there are corresponding defined values
in other websites for a different functionality and such
defined values flow to sinks. Therefore, GALA can follow
the defined values and their flows to locate a gadget and
guide the adversary-injected values (replacing the originally-
undefined ones) to flow to the sink for exploitation. That is,
GALA tackles the challenges in crafting complex values
for undefined properties of victim websites faced by prior
works (which either do not have predefined values or fail
to produce a value using constraint solvers) using defined
ones in other websites.

Naturally, GALA has three phases: (i) locating unde-
fined properties, (ii) assigning defined values for previously-
undefined properties, and (iii) guiding undefined properties
using defined values. More specifically, first, in the “Un-
defined Locating” Phase, GALA renders target websites
using a modified version of Chromium [9] to record all
undefined properties. Second, in the “Defined Assigning”
Phase, GALA locates the defined values for the undefined
properties found in the first phase and tracks whether such
values flow to a sink. Lastly, in the “Guiding” Phase, GALA
uses the defined values to guide the undefined property in-
jection. Such a process could be repeated because additional
undefined properties may be discovered along the data flow.

We implemented an open-source prototype [10] of
GALA and ran it on one million websites from the Tranco
list [11]. Our results reveal 133 zero-day gadgets that are
not found in prior works, including a zero-day gadget from
software maintained by Meta and another from the Vue
framework. We responsibly reported all the gadgets to their
developers and so far four have been fixed. Among the de-
velopers who fixed the reported gadgets, Meta further gave
us a bug bounty, and Vue assigned CVE-2024-6783 [12].
We also compared GALA with ProbetheProto and Silent
Spring using 1,000 websites. Our evaluation shows that
GALA detects all the gadgets found by ProbetheProto and
Silent Spring. In addition, GALA finds that 23 websites
with prototype pollution vulnerability—which are reported
as no further consequences by prior work, specifically
ProbetheProto—are further vulnerable to consequences in-
cluding XSS and Cookie/URL manipulations.

1.1. Research Contributions

We make the following research contributions in design-
ing and implementing GALA:
• We design a novel approach that borrows defined values

from different executions (e.g., on another website) to
guide adversary-injected values on originally undefined
properties to flow to the sink and achieve prototype pol-
lution consequences.
• We evaluate GALA upon the top one million real-world
websites: GALA discovered 133 zero-day gadgets that
were not found by prior works before and 23 zero-day
end-to-end exploits that are caused by zero-day gadgets.
• Some of our findings have real-world impacts, which
have been acknowledged and fixed by developers, e.g.,
Meta with bug bounties and Vue with CVE-2024-6783.

1.2. Paper Organization

The rest of the paper is organized as follows. We first
give an overview of GALA including some backgrounds,
a motivating example, and our threat model in Section 2.
Then, we introduce the core design of GALA including
three phases in Section 3. Next, we describe the detailed
implementation of GALA including different components
in Section 4. Then, we evaluate GALA in Section 5; the

evaluation comprises zero-day gadgets, end-to-end exploits,
comparisons with baselines, performance, an ablation study,
and an analysis for defined values. After that, we discuss
a few issues, e.g., ethics, in Section 6 and present related
works in Section 7. The paper concludes in Section 8.

2. Overview

In this section, we start by describing some backgrounds
of prototype pollution, followed by a motivating example
and our threat model.

2.1. Background

Prototype pollution, just like what is indicated in its
name, allows an adversary to traverse through the prototype
chain—if an object lookup is controllable—and then inject
a malicious property under a prototypical object. A typical
target will be the prototype of a built-in object, such as
Object.prototype and Function.prototype, be-
cause they are the base objects of many other JavaScript ob-
jects. As a consequence, a follow-up lookup to an originally-
undefined property lookup may result in the adversary-
injected value and an alteration of control- or data-flows.
Depending on how the control- or data-flow is changed to
different sinks, the adversary may escalate a prototype pol-
lution via so-called gadgets to different consequences, such
as Remote Code Execution (RCE) on the server side [3],
[5], [6] and XSS on the client side [1], [4], [13].

More specifically, a prototype pollution gadget, follow-
ing prior works [5], [6], is defined as a code snippet, starting
from an undefined property and ending with either a sink
or another undefined property. If a gadget starts from one
undefined property and ends up with a sink, the gadget is
called a direct gadget; otherwise, if a gadget needs a few
undefined properties to finally reach the sink, the list of
gadgets is defined as a gadget chain.

2.2. A Motivating Example

In this part, we describe a real-world, zero-day prototype
pollution gadget that GALA discovered as a motivating
example. The gadget is located in software developed and
maintained by Meta, called “fbevents.js”, which is respon-
sible for sending website visitor data to Meta. The conse-
quence of the gadget is called cookie manipulation, i.e., the
injection and alteration of adversary-controlled cookies. We
responsibly disclosed the gadget to Meta, who fixed it and
gave us a bug bounty.

Figure 1 shows the source code of this zero-day gadget.
b[0] (Line 5) is originally undefined and thus controllable
by an adversary via prototype pollution. The injected value
flows to Line 16 and then eventually Line 17, affecting
document.cookie. This gadget leads to a cookie ma-
nipulation consequence in 21 real-world websites. Since this
is a tracking cookie, an adversary may hijack the cookie
with their own value like a session fixation, thus potentially

1 function p() {
2 var b = [];
3 ...
4 // Vulnerable code:
5 - return b && typeof b[0] === "string" ? b[0] : ""
6 // Patched code:
7 + return b && Object.prototype.hasOwnProperty.call(

b,0) && typeof b[0] === "string" ? b[0] : ""
8 }
9 function unpack(e) {

10 var d = 4;
11 e = e.split(".");
12 if (e.length !== d)
13 return null;
14 return e;
15 }
16 var a = unpack(p());
17 if (a) document.cookie = "_fbc=" + a.join(".") + ";";

Original: undefined

Exploit: “fb.1.COOKIE.VALUE”

Challenging constraints

Figure 1: The vulnerable source code of a zero-day gad-
get found by GALA, which is located at https://connect.
facebook.net/en US/fbevents.js. The gadget leads to cookie
manipulation in 21 real-world websites and has already been
fixed by Meta (the patch code is shown in Line 7) after our
responsible disclosure.

stealing the victim’s future visit histories, or injecting their
own visit histories to the victim to impersonate the victim
on the target website [14], [15]. The consequence is also
acknowledged by Meta as part of the reasons for the patch
and the bug bounty. The patched code is shown in Line 7,
which checks whether the 0 property is native to b instead
of a prototypical object.

2.2.1. Challenges and How GALA Solves Them. While
the gadget seems intuitively simple, it is very challenging for
state-of-the-art approaches to detect and exploit the gadget
due to its complex constraint (Lines 11–13). Specifically, the
value in the exploit needs to contain three dots since Line 11
splits the string value based on the character dot into an array
and Line 12 checks the length of the array as four. Let us see
why state-of-the-art approaches cannot detect and exploit it.
First, ProbetheProto [4]—the only tool in detecting client-
side gadget—fails to fulfill the constraint at Line 11–13,
because it uses predefined values, e.g., commonly used
XSS payload and random strings for cookie manipulation.
Second, even if prior works on server-side gadgets—such
as UoPF [5] and Silent Spring [6]—can hypothetically be
ported to the client side, they cannot detect and exploit the
gadget. On one hand, existing constraint solvers, e.g., Z3 [8],
do not support complex string operations, such as split.
On the other hand, the client-side code heavily uses dynamic
features, which often fails existing static analysis.

Instead, GALA can detect and exploit the gadget be-
cause b[0] is defined in other websites with a concrete
value containing three dots. Specifically, such a concrete
value comes from a cookie of these websites, named _fbc.
That is, these websites read this cookie using a regular
expression, store them into the array b, update the cookie,
and finally write back to document.cookie. As a com-
parison, the victim website does not have the _fbc cookie

and therefore b[0] is undefined. GALA borrows the value
of b[0] from those websites where it is defined to pollute
the victim website and detects the gadget.

2.3. Threat Model

Our threat model assumes the existence of a prototype
pollution vulnerability, and then an adversary locates gad-
gets to utilize the prototype pollution for further conse-
quences. If an unknown prototype pollution indeed exists
together with a gadget, we call the finding an end-to-end
exploit. Otherwise, we call the finding a gadget and if the
gadget is unknown before and cannot be detected by prior
works, it is called a zero-day. Our in-scope consequence is
the same as prior work [4] on client-side gadgets and listed
below:
• Cross-site Scripting (XSS). An adversary pollutes a pro-
totypical object so that the polluted values can be executed
as JavaScript, e.g., through eval and innerHTML.
• Cookie Manipulation. Adversary-polluted values can
manipulate the cookie jar of the victim’s website, e.g.,
through document.cookie.
• URL Manipulation [16], [17]. An adversary can manip-
ulate the query string of a given URL, which may lead to
attacks like HTTP parameter pollution.

Note that the detection of gadgets apart from prototype
pollution vulnerabilities is indispensable just like the de-
tection of gadgets for memory-related vulnerabilities [18]–
[21]. On one hand, a website with gadgets may not currently
be vulnerable to prototype pollution, but could potentially
become vulnerable if a script with prototype pollution is
included in the future. On the other hand, an adversary may
curate a database of known gadgets and exploit prototype
pollution with these gadgets.

2.3.1. Out-of-the-scope Problems. We consider the follow-
ing problems as out of the scope of this paper.
• Server-side Gadgets. We consider server-side conse-
quences, e.g., command injection, and the detection of
such gadgets are out of the scope of the paper, because
GALA analyzes top websites instead of server-side pack-
ages. One may refer to prior works, e.g., Liu et al. [5] and
Silent Spring [6], for the detection of server-side gadgets.
• Detection of Prototype Pollution. We consider the de-
tection and exploitation of the prototype pollution vul-
nerability itself to be out of the scope of the paper,
because we mainly focus on the consequence of prototype
pollution, i.e., the detection and exploitation of a gadget.
One may refer to prior works, e.g., ProbetheProto [4], for
detection techniques. Note that we do consider end-to-end
exploits in the paper by using prototype pollution detected
by ProbetheProto [4] and zero-day gadgets detected by
GALA.

3. Design
In this section, we describe the design of GALA by

introducing the overall system architecture and then three
phases of GALA.

https://connect.facebook.net/en_US/fbevents.js
https://connect.facebook.net/en_US/fbevents.js

Web
Crawler

Instrumented
JS Runtime

Dynamic
Taint

Engine

Property
Values

Source

Sink

✅

Flow
Validation

HTML & JS
from

Other Sites

HTML & JS
from the

Target Site

Instrumented
JS Runtime

Require for More Undefined Properties

Phase 1

Phase 2
Gadgets

😈Gadget
Validation

✅

Phase 3

Undefined
Properties

Defined
Values

Figure 2: System Architecture of GALA. There are three major phases: (i) Locating undefined properties, (ii) Assigning
defined values, and (iii) Guiding dataflows for originally undefined properties. In Phase 1, GALA runs an instrumented JS
runtime to output all the undefined properties; in Phase 2, GALA finds corresponding defined values in other executions
(which could exist in the same or a different website) and assigns such values to undefined ones in Phase 1; in Phase 3,
GALA uses these defined values to guide the execution with previously undefined values to reach the sink and discover
gadgets. All the gadgets are validated automatically using a generated payload to ensure corresponding consequences are
achieved.

3.1. System Architecture

The system architecture of GALA is shown in Figure 2
with three phases in the general workflow. In Phase 1,
GALA detects and locates the undefined properties for use
in Phase 2. Specifically, GALA adopts a web crawler to
get main- and sub-pages following a list of top-ranked
websites. Then, GALA records undefined properties and
the incomplete control- or data-flows caused by undefined
properties using an instrumented JavaScript runtime, i.e.,
V8’s Ignition [22]. In Phase 2, GALA discovers and as-
signs the corresponding defined values with the undefined
properties discovered in Phase 1. To achieve this, GALA
collects values from other websites that are using the same
JavaScript code and leverages a dynamic taint engine to
determine whether these values can contribute to a com-
plete data flow, i.e., directly flowing to a sink or helping
other values flow to the sink. Once GALA identifies such
complete flows, GALA records the defined values for use
in Phase 3. In Phase 3, GALA validates that the flows in
the original website can be indeed guided by the unveiled
defined values. If such flow does not exist, GALA repeats
the procedure Phase 1-3 to detect potential flows caused by
chained gadgets, i.e., needing more than one defined value
to complete the data flow. Finally, after the flow is validated,
GALA constructs corresponding payloads and outputs the
detected gadget.

3.2. Phase 1: Locating Undefined Properties

In this phase, GALA treats each undefined property as
the source of a potential (incomplete) flow to the sink func-
tion and records information related to undefined properties
for later phases. The reason that GALA looks for such
undefined properties because they can be manipulated by
adversaries per our threat model, thus forming into gadgets.

3.2.1. Detecting Undefined Properties. The first step is
to detect undefined properties via an instrumented JS run-
time with hooked property lookup APIs. Table 1 shows a
list of such APIs from Ignition [22], the JavaScript inter-
preter in Chromium’s V8 engine. Note that GALA follows
JavaScript Specification [23] to hook different types of
property lookups including both named (e.g., obj.name)
and keyed (e.g., obj[key]).

3.2.2. Recording Undefined Properties. Once an unde-
fined property lookup is triggered via the instrumented
JavaScript runtime, the second step of this phase is recording
the detailed information about the undefined properties into
the database for later use in Phase 2. The information is used
to locate and identify the undefined property, which consists
of the website’s name, the name of the undefined property,
the name and contents (in terms of hashes) of the involved
function, the JavaScript file name, and the line number and
offset of the property lookup statement.

TABLE 1: A comprehensive list of property-related APIs
hooked by GALA in Ignition [22] of Chromium V8 engine.
“Phase Index” indicates in which Phase the hooked APIs
are used.

Function Name Namespace in V8 Phase Index

ReadAbsentProperty Object 1
GetProperty Object 2 & 3
GetDataProperty JSReceiver 1, 2 & 3
GetPropertyWithAccessor Object 2 & 3
GetPropertyWithInterceptorInternal Object 2 & 3
GetObjectProperty Runtime 1, 2 & 3
KeyedGetObjectProperty v8::internal 2 & 3

3.3. Phase 2: Assigning Defined Values

In this phase, GALA discovers the defined values of pre-
viously undefined properties, performs dynamic taint propa-
gation, and then assigns such values to undefined properties
for those websites in Phase 1.

3.3.1. Discovering Defined Values. In this step, GALA first
locates those properties in the separate execution of the same
script, but elsewhere, e.g., another website or another call
stack on the same website. Specifically, GALA leverages
instrumented JS runtime with hooked property-lookup APIs
as shown in Table 1 and outputs the property values if they
are defined. There are two things worth noting here. First,
the number of APIs for Phase 2 is more than those for
Phase 1, because there are more functions to handle defined
properties compared with undefined. Second, defined and
undefined property lookups could be located in the same
script and website but with different call stacks. That is, the
same function is called more than once: some with a defined
value and some with undefined. Such defined values can also
help GALA in Phase 2.

3.3.2. Dynamic Taint Propagation. In this step, GALA
marks defined properties discovered in the previous step as
tainted and propagates the taint value until another undefined
property is encountered or the taint reaches a sink. Figure 3
shows the design of the taint byte used for the taint value.
The first three bits are used for sanitization markers, the
last bit the taint value, and the rest four unused. The taint
information is stored for each byte of a string, thus en-
suring precise taint propagation through operations such as
string slicing and concatenation. The storage of sanitization
methods is used to map sanitizations to different final sinks:
A sanitization is considered as in place if it is used for
sanitizing values for the sink.

There are two things worth noting here. First, the list
of sinks adopted by GALA follows prior works [4], [24]–
[26]. More specifically, GALA considers HTML, JavaScript,
Storage, and setAttribute, i.e., the consequence in-
cludes Cross-site Scripting (XSS), URL manipulation, and
cookie manipulation. Second, type conversion is also con-
sidered as sanitization, e.g., converting a string to an integer
will sanitize that input for further consequences like XSS.

0 0 1 0 0 0 0 1

Sanitization
Marker Unused Value

Taint

Figure 3: A representation of the value taint bits used in
GALA. In one byte, first three bits are used for sanitization
markers, the last bit is used for value taint, and the other four
bits are unused. This figure shows the byte for an adversary-
controllable property (the last bit is 1, i.e., tainted) but has
been sanitized by hasOwnProperty (the first three bits
are 001).

3.3.3. Value Assignment. In this step, GALA matches
defined and undefined values in different executions and
assigns defined values to previously undefined properties.
Such a matching and assignment are based on recorded
information of two executions, which includes JavaScript
file name, function name and hashes, property name, and
line number and offset. That is, if all the stored information
matches, GALA will assign the identified defined values to
the previously undefined property.

3.4. Phase 3: Guiding Dataflow for Originally Un-
defined Properties

In this phase, GALA guides the dataflow for the victim
website with originally undefined properties with values
assigned in Phase 2 so that the assigned values (i.e., those
injected by adversaries) can flow to the corresponding sink.
Then, GALA generates a payload based on the dataflow and
validates the gadgets further based on the generated payload.

3.4.1. Flow Validation. In this step, GALA validates
whether the assigned defined properties enable the origi-
nal undefined lookup to successfully reach the sink. First,
GALA marks the undefined candidates with the correspond-
ing defined values as tainted. Next, GALA employs dynamic
taint analysis to perform taint tracking on the polluted values
to determine if they reach the sink. If the polluted values do
not flow to the sink but new undefined properties emerge,
GALA performs the recording step of Phase 1 to record the
property. Then, GALA repeats Phase 2 to discover further
defined values if such values exist. In the end, when several
iterations are repeated and the sink is reached, GALA
records the taint flow, including all defined values necessary
for the flow to reach the sink, and proceeds to payload
generation.

3.4.2. Payload Generation. In this step, GALA generates
payloads based on the validated flow from the previous step.
More specifically, there are two tasks: (i) constructing an
object structure for property chaining, and (ii) generating
property values to trigger the sink and the consequence (e.g.,
XSS and cookie/URL manipulations).

First, GALA constructs an object structure based on
how a property is being looked up in the victim pro-

gram. For example, GALA constructs a nested object like
{elem: {text: "polluted"}} for a chained prop-
erty lookup such as obj.elem.text. Instead, if two
property lookups are in parallel, GALA will construct two
objects with different properties.

Second, GALA generates property values following its
context values in the sink just like prior works [4], [25]–
[27]. That is, GALA adds closing tags or symbols so that
the generated payload is syntactically correct. Note that
we do not claim any research contributions for GALA in
comparison with prior works [4], [25]–[27] on the property
value generation. We now describe it based on different sink
types:

• JavaScript sinks (e.g., eval or new Function).
GALA adopts two techniques: (i) closing the context, and
(ii) generating computed property. First, GALA closes the
string context, e.g., adding double quotes and commas
to an object where the property value is controllable by
an adversary. Second, GALA relies on computed prop-
erties, e.g., {[‘expression‘]: value}, to execute
JavaScript code when such a property name is controllable
by an adversary.
• HTML sinks (e.g., document.write and
innerHTML). Similar to JavaScript sinks, GALA
closes the context of an HTML string by adding closing
tags.
• Storage sinks (e.g., Cookies, Local Storage, and Session

Storage). GALA borrows the storage contents obtained
from another execution of the same script, if they are
available. If not, GALA generates random values for
storage sinks.
• Attribute sinks (e.g., setAttribute). GALA gen-
erates property values based on the attribute type and the
controlled part of the property. Specifically, if the entire
value of src and href attributes can be controlled,
GALA generates a data URL with code execution for
an XSS consequence. Otherwise, if only part of a URL,
e.g., the query string can be controlled, GALA appends a
new query string according to the property name and its
corresponding value, e.g., ?key=polluted, for URL
manipulation [4], [17].

3.4.3. Gadget Validation. In this step, GALA injects the
generated payload from the previous step into the victim
website via prototype pollution and checks whether the con-
sequence is indeed triggered as a validation of the detected
gadget. Such a checking depends on different consequences:

• XSS. GALA executes a console.log with a unique
string and then checks whether such a string can be found
in the console.
• Cookie manipulation. GALA injects either a unique or

a borrowed value into the cookie jar and then checks
whether the injected value exists.
• URL manipulation. Similarly, GALA injects and checks
whether a unique or a borrowed value exists in the query
string of a manipulated URL.

4. Implementation

We implemented a prototype of GALA with 4,627
lines of Python, 340 lines of C/C++, and 446 lines of
JavaScript. The prototype is open source on an anonymous
repository [10]. We provide implementation details of the
following components:

• Crawler. We implemented the crawler using a Google
Chrome extension with 143 lines of JavaScript. The
crawler visits all top one million domains in the Tranco
list [11] generated on January 31, 2024 and navigates
through links embedded on the front page of each web
domain until the crawler reaches 15 links deep, which is
five levels deeper than the maximum level of prior work,
namely ProbetheProto [4].
• Overall Analysis and Database Storage. To ensure the
flexibility and performance of data querying, we adopted a
local MongoDB server [28]. With 4,627 lines of Python
code, we established the data extractions, analysis, and
evaluations utilized by Phases 1, 2 and 3. Several fea-
tures are included in our database design to facilitate the
reliability and scalability of communications between the
components of GALA and the database:

(1) Database indexing by code-hashes: GALA uses a
third-party library SHA256 to hash each code-snippet.
The code-hashes are then used as the indices of database
collections to save storage size and improve query effi-
ciency.

(2) Two-way communication: All asynchronous queries
establish database connections using PyMongo clients due
to direct access and lower latency. At the same time, all
synchronous requests go to a local flask server for its
extensibility.

(3) Parallel processing: Given the large amount of
data from 1M websites, we leveraged multi-threading
whenever possible. To avoid race conditions when con-
current threads interact with the database, we maintained
collection-level synchronization through atomic opera-
tions.
• Instrumented JS Runtime and Dynamic Taint Analysis.
Both components are based on an instrumented Google
Chromium, which is also used by prior works [4], [25].
First, we describe the instrumented JS runtime. Following
Table 1, the detected undefined properties are recorded
and later stored to the database asynchronously. This
asynchronous pipeline helps maximize the speed of web-
crawling and maintain the stability of database transac-
tion through rate-limiting and error-handling. Next, we
describe the dynamic taint analysis. We implemented a
taint byte in v8/include/v8.h for precise taint tracking. To
perform dynamic taint analysis, GALA sets the defined
values discovered in Phase 2 and injected in Phase 3
as tainted and propagates the taint. GALA then records
information of a taint flow and corresponding defined
values once the taint flows to a sink.
• Flow Validation. With the knowledge of undefined prop-
erties from Phase 1 and their corresponding defined values

from Phase 2, we developed a Google Chrome extension
to inject the values to the targeted websites. We also
implemented flow validation and payload generation in
Python to construct payloads based on the defined values
and sink types of the validated flows. Furthermore, if the
flow does not reach a sink but produces new undefined
properties, GALA repeats Phase 2 with these new unde-
fined properties for potential chained gadgets.
• Gadget Validation. We implemented a payload generator
to construct payloads according to the sink type and the
defined values of each gadget. For storage and attribute
sinks, we borrowed the approach of ProbetheProto [4].
For HTML and JavaScript sinks, we adapted the context-
aware exploit generator from prior work [26]. Finally,
we developed a Google Chrome extension to inject the
payload to the target website on an official Chromium [9]
to validate the gadget.

5. Evaluation

In this section, we evaluate GALA and compare it with
baselines.

5.1. Research Questions and Experimental Setup

We describe the research questions (RQs) used in the
evaluation and the experimental setup in choosing baselines
and datasets for these RQs.
Research Questions (RQs). In this evaluation, we answer
the following research questions (RQs).
• RQ1: How many zero-day gadgets (i.e., those are not

detected or reported by prior works) and zero-day end-to-
end exploits can GALA find?
• RQ2: How many zero-day end-to-end exploits are there

among the zero-day gadgets found by GALA?
• RQ3: What are the False Positives and Negatives of

GALA in comparison with baselines?
• RQ4: What is the performance of GALA?
• RQ5: What are the impacts of GALA’s two
components—value replacement and exploit generator—
in the context of an ablation study?
• RQ6: What are the characteristics of the defined values

tested by GALA during the large-scale evaluation?

Baselines. In the evaluation, we adopt the following two
baselines in comparison with GALA.
• ProbetheProto. ProbetheProto [4], a dynamic analysis

tool, is designed to detect client-side prototype pollution
and its consequences (i.e., gadgets). That is, both the
vulnerability and the consequence have to co-exist for a
website. We adopt the original source code from Probethe-
Proto’s authors and add a prototype pollution extension
to it, so that ProbetheProto can detect the gadgets even if
there is no prototype pollution.
• Silent Spring. Silent Spring [6], a mostly-static analysis
tool, is designed to detect server-side prototype pollution
and gadgets. That is, the original Silent Spring is not able

to detect any client-side gadgets. We adopt the original
source code and adapt it to incorporate client-side sinks
for detecting client-side gadgets.

Datasets. We use the following datasets when evaluating
GALA.
• 1M Websites. This contains top one million domains
from the Tranco List [11]. Specifically, GALA’s crawler
processed 8,594,700 webpages from the one million web-
sites, creating a dataset for evaluation. We use the dataset
to evaluate zero-day gadgets found by GALA as well as
zero-day end-to-end exploits (RQ1 and RQ2). Note that
the crawler and taint engine were stable in processing
96.06% of websites without errors or crashes.
• 1K Websites. This contains top 1,000 websites from the
Tranco List [11]. We use the dataset to compare GALA
with baselines, i.e., RQ3, in terms of False Positives and
evaluate GALA’s performance in RQ4.
• BlackFan Dataset [13]. This is a gadget dataset with
ground truth information, which is manually curated by a
Github user with a handler called “BlackFan”. At the time
of paper writing, the dataset has 39 client-side prototype
pollution gadgets. Since ground truth information is avail-
able, we use the dataset to evaluate the False Negatives
of GALA and baselines.

5.2. RQ1: Zero-day Gadgets Found by GALA

In this research question, we answer the question of
zero-day gadgets that are detected by GALA. Specifically,
our definition of a zero-day gadget is that the gadget cannot
be detected by any of prior works, e.g., ProbetheProto and
Silent Spring, and it has not been discovered manually, e.g.,
in the BlackFan dataset or anywhere online. Once GALA
detects a gadget, we will search online sources, e.g., Github
repository, to confirm this.

5.2.1. Statistics and Breakdowns. In total, GALA detected
133 unique zero-day gadgets that exist in 5,413 real-world
domains. Table 2 presents a selective list of zero-day gadgets
found by GALA. Notably, some of the gadgets are found
in widely used libraries. For example, three gadgets that
can lead to Cross-Site Scripting (XSS) are from Vue 2.6,
which is a popular single-page application (SPA) framework.
Moreover, the 2.6 version is still used by millions of web-
sites according to W3C [29]. Among the Vue 2.6 gadgets,
one is direct and the other two are chained.

Table 3 also shows a breakdown of these gadgets based
on consequences. From the gadget perspective, XSS gad-
get is the most popular, probably due to the extensive
use of related sink functions, such as innerHTML and
setAttribute, on the web to construct dynamic HTML
pages and include third-party libraries. Then, URL manipu-
lation comes next with 50 gadgets. Note that our definition
here following prior works [17] is that an adversary can
manipulate the query string instead of the full URL. If the
full URL is manipulable for a script tag, GALA considers
it as XSS. Lastly, GALA finds the least number of gadgets
with cookie manipulations.

5.2.2. Case Studies. In this part, we give two case studies
on gadgets found by GALA below.
Case 1: Chained gadgets. The first case study, as shown in
Figure 4, is a chained gadget that GALA found in the Vue
2.6 library. These gadgets are control-flow dependent: the
second gadget, starting on line 18 with e.staticClass,
requires the pollution of the first gadget on line 4 with
e.component to alter the control flow. By default,
e.component is undefined and therefore the else branch
is executed. Polluting this first undefined property allows
stepping into the if branch, enabling the second undefined
property lookup within the genData function to be iden-
tified, whose value, if defined, will flow to the argument of
the function constructor in function Ya. The dynamically
constructed function will be invoked later in the render
process of Vue-defined components.

Note that this is a challenging case due to two reasons.
First, the function call at Line 13 is dynamic, i.e., genData
is a string as part of the t.dataGenFns array. There-
fore, existing static analysis cannot locate this function call.
Second, this is a chained gadget, meaning that only when
e.component is defined, Va is invoked and therefore
e.staticClass flows to the sink (Line 21).

GALA found this gadget chain by utilizing the defined
values in other websites. That is, when e.component and
e.staticClass are defined in other websites, GALA
tracks the dataflow to the sink at Line 21. Such defined
values help GALA to find the chained gadgets.
Case 2: Gadget detected by self-serving websites. We
illustrate a case study on a self-serving website, i.e., a
website that provides defined values itself with another call
stack. In other words, the defined values that GALA collects
in Phase 2 from those websites can be used to guide the
undefined properties on the same websites. Figure 5 shows
the gadget from mountvernon.org. It is the official website
for a historic estate located in Virginia and ranks 30,586 on
the Tranco website list.

Now, we explain how the website provides defined
values themselves. First, one div element l is generating
contents for innerHTML at Line 13 and calls the function L
at Line 4. Then, g[e] at Line 5 returns undefined since
the object g has no property yet. Afterwards, t will become
a generated HTML string and the program stores it in g for
convenience. Second, another div element n uses the same
function to generate its HTML code and L is visited again.
This time, g[e] is the previously-stored defined value.
Consequently, GALA discovers that value during Phase 2.
GALA then leverages it to guide the undefined g[e] lookup
and generate corresponding exploits for the innerHTML
sink, as shown in Line 1 in Figure 5.

5.3. RQ2: Zero-day End-to-end Exploits

In this research question, we answer the question of
the number of end-to-end exploitable domains. Here is the
methodology. Specifically, GALA runs ProbetheProto [4]
on top of one million Tranco websites to find prototype

1 // Exploit: __proto__[’component’]=1&__proto__[’
staticClass’]=’alert(1)})};//’

2
3 function Ra(e, t) {
4 n = "";
5 if (e.component) // Undefined property 1
6 n = function(e, t, n) {
7 return "_c(" + e + "," + Va(t, n) + (r ?

"," + r : "") + ")"
8 }(e.component, e, t);
9 return n;

10 }
11 function Va(e, t) {
12 for (var i = 0; i < t.dataGenFns.length; i++)
13 n += t.dataGenFns[i](e); // This dynamic

function call invokes genData (Line 16)
14 return n
15 }
16 genData: function(e) {
17 // Undefined property 2
18 return e.staticClass && (t += "staticClass:" + e.

staticClass + ","), t
19
20 function Ya(e, t) {
21 return new Function(’with(this){return’ + Ra(e) +

’}’);
22 }

Figure 4: [RQ1] A case study of control-flow dependent
chained gadget found in Vue 2.6 library by GALA.

1 // Exploit: __proto__.ar = "<img src=1 onerror=alert
(1)>"

2
3 var g = {}, t;
4 var L = function(e) {
5 return e === "en" ? "" : g[e] || (t = ’<a data-

lang="’ + e + ’">Title’,
6 g[e] = t)
7 };
8
9 // Main function with innerHTML as the sink

10 var l = document.createElement("div");
11 var n = document.createElement("div");
12 ...
13 l.innerHTML = ’<div>’ + L("ar") + ’</div>’;
14 n.innerHTML = ’<div>’ + L("ar") + ’</div>’;

Figure 5: [RQ1] A self-serving website (i.e., the defined
values are provided by the same website to serve as the
undefined exploit).

pollution vulnerabilities. We use the same code from the
original authors with a few more templates, e.g., more
delimiters. As discussed, the detection of prototype pollution
vulnerabilities is not the focus of the paper and we do not
claim any contributions here. If a prototype pollution vulner-
ability is detected by ProbetheProto, GALA checks whether
the website contains a zero-day gadget. If so, GALA will
generate an end-to-end exploit on the website and verify
the exploit if the consequence is achieved, i.e., scripts get
executed for XSS, and values get injected for cookie and
URL manipulations.

5.3.1. Statistics. Table 2 also shows the number of end-
to-end domains for each gadget in the selective list. If
an end-to-end exploit is possible, our “Generated Gadget

mountvernon.org

TABLE 2: [RQ1&RQ2] A selective list of zero-day gadgets found by GALA. The “Library” column shows the third-party
library name, the “# Domains” column the number of end-to-end exploitable domains with that library, the “Consequence”
column the prototype pollution consequence of the gadget, which could be XSS (Cross-site Scripting), Cookie-M (Cookie
Manipulation), and URL-M (URL Manipulation), the “Type” column whether the gadget is direct or chained, the “Reporting”
whether the gadget has been reported, confirmed or fixed, and lastly the “Generated Exploit Code” the exploit code generated
by GALA to trigger the gadget.

Library # Domains Consequence Type Reporting Generated Gadget Exploit Code

fbevents.js 21 Cookie-M Direct Fixed https://asse.com/?__proto__[0]=fb.1.COOKIE.INJECTION

Vue2.6 (1) 2 XSS Direct Fixed https://itongzhuo.com/?__proto__[staticStyle]=alert(1)})}//

Vue2.6 (2) 2 XSS Chained Fixed https://itongzhuo.com/?__proto__[key]=1&__proto__[classBinding]=alert(1)})}//

Vue2.6 (3) 0 XSS Chained Fixed __proto__[’value’]=’1’&__proto__[’staticClass’]=’alert(1)})};//’

prettify.js 0 XSS Direct Reported __proto__[’-’]=’1"><!--’

gtranslate 0 XSS Direct Reported __proto__[’en’]="\"><textarea>"

cookie consent 0 XSS Direct Reported __proto__[’title’]=’<textarea>’

Baidu m.js 0 XSS Direct Reported __proto__.pageSearchId=’1"></script><script>alert(1)</script><!--’

lottie.js 0 XSS Direct Reported __proto__.x=’},{[alert(1)]:1}]//’

webcomponents-loader 0 XSS Direct Reported __proto__[’root’]=’http://malicious.com’

ga.js 0 Cookie-M Direct Reported __proto__[’x68’]=’(direct)’

complete.js 0 Cookie-M Direct Reported __proto__[’analytics_session_token’]=’COOKIE-VALUE-1-2-3’

require.js 0 URL-M Direct Reported __proto__[’baseURL’]=’KEY=VALUE1.VALUE2’

TABLE 3: [RQ1] A consequence-based breakdown of zero-
day gadgets (# Gadgets).

Consequence Sink # Gadgets

XSS
HTML 21
JavaScript 12
setAttribute 23

Sub-Total 56

URL Manipulation

anchor 11
iframe 2
img 14
script 23

Sub-Total 50

Cookie Manipulation cookie 27

Total 133

Exploit Code” column uses a real-world, vulnerable domain
as an example to show the end-to-end exploit and the “#
Domains” shows the number of affected domains with end-
to-end exploits. As expected, 21 domains use “fbevents.js”
and are vulnerable to cookie manipulations. That is also why
Meta quickly fixes the vulnerability based on our reporting.
Vue developers also acknowledged the vulnerability and are
working on a fix when the paper is submitted. GALA finds
two domains that are end-to-end exploitable. Interestingly,
the two domains are only vulnerable to two gadgets in
Vue, but not the third one. The reason is that some values
may be defined in these two domains, making the third
gadget unexploitable. Another thing worth noting is that
these 23 domains are in the ProbetheProto’s reports [4]

and are considered as having no consequences. That also
demonstrates the power of newly-found, zero-day gadgets.

5.3.2. A Case Study. In this part, we illustrate a case
study of a real-world end-to-end exploit in Figure 6.
This exploit leverages the gadget from Meta’s software
‘fbevents.js’ as shown in Figure 1, and the prototype pollu-
tion vulnerability is located at Line 19. Specifically, when
a URL is parsed at the parseUrl function (Line 27),
the parse function is then called at Line 34. Then, the
parse function will be called recursively at Line 13,
where part equals __proto__ and thus so does the
key parameter of the parse function. After that, Line 16
is executed, which makes obj a prototypical object, i.e.,
Object.prototype. Since there are no keys under obj,
its length equals 0, which pollutes the 0 property of the
prototypical object. Finally, as the Meta gadget in Figure 1
requires access to the 0 property, the prototype pollution
vulnerability is connected with the gadget, leading to the
cookie manipulation consequence.

We choose to illustrate this end-to-end exploit due
to the complexity of connecting the prototype pollu-
tion with the gadget. Specifically, if an adversary adopts
__proto__[0], the prototype pollution and the gadget
are not connected. The reason is that the first run of
parse will go to Line 11, and the second run to Line
13. Consequently, the prototype pollution injects an array
instead of a string to the prototypical object. Given that the
prototype pollution gadget checks whether the type of b[0]
equals string but not array in Line 5 of Figure 1, the
exploit __proto__[0] will not lead to any consequence.

1 // End-to-end exploit: ’https://www.perfectlens.ca/?
__proto__[]=fb.1.cookie.value’

2 // 1. prototype pollution: purl.js
3 function parse(parts, parent, key, val) {
4 var part = parts.shift();
5 if (!part) {
6 if (isArray(parent[key])) {
7 parent[key].push(val);
8 } else if (’object’ == typeof parent[key]) {
9 parent[key] = val;

10 } else if (’undefined’ == typeof parent[key]) {
11 parent[key] = val;
12 } else {
13 parent[key] = [parent[key], val];
14 }
15 } else{
16 var obj = parent[key] = parent[key] || [];
17 if ("]" == part) {
18 if ("object" == typeof obj) {
19 obj[Object.keys(obj).length] = val; //

vulnerability location
20 }
21 }
22 else if (!part.includes("]")) {
23 parse(parts, obj, part, val);
24 }
25 }
26 }
27 function parseUri(url){
28 ...
29 // key = "__proto__[]"
30 // parent={"base":{}}
31 // val="fb.1.cookie.value"
32 var parts = key.split("[");
33 // parts = ["__proto__", "]"]
34 parse(parts, parent, "base", val);
35 }
36 parseUri(document.URL);
37
38 // 2. Meta’s fbevents.js Gadget; please see Figure 1.

Figure 6: [RQ2] A case study of end-to-end exploits using
the Meta gadget.

As a comparison, GALA generates flexible exploits such
as __proto__[] so that more exploitable gadgets are
exposed.

5.4. RQ3: False Positives and Negatives of GALA
vs. Baselines

In this research question, we study the false positives
(FPs) and negatives (FNs) of GALA and compare GALA
with two baselines. The evaluations of FPs and FNs are
based on two different datasets because we do not have
ground truth information for real-world websites and there
are no negative cases for the BlackFan dataset.

5.4.1. False Positives. Table 4 shows the False Positives and
False Discovery Rate, i.e., FP/(TP+FP), of three approaches
on top 1,000 Tranco websites. Let us first discuss Probethe-
Proto vs. GALA. GALA reports 15 zero-day gadgets among
1,000 Tranco websites as opposed to one from ProbetheP-
roto. The reason is that ProbetheProto adopts a fixed set of
values (e.g., __proto__[k]=alert(1)) and hopes that
the injected values can flow to the sink. Instead, GALA
borrows known values from Top 1 million websites, which

have already flown to the sink. Therefore, GALA detected
many more gadgets compared with ProbetheProto.

We then discuss Silent Spring vs. GALA. Silent Spring
reports 37 gadgets, but most of the reports are false positives.
Note that a high FP is expected for Silent Spring given the
static nature of Silent Spring. The FDR is higher than the
one reported in their paper because their target is server-side
Node.js packages. As a comparison, client-side JavaScript
is mostly minimized and contains more dynamic features,
which brings more challenges for static analysis like Silent
Spring and their underlying static analysis engine CodeQL.

5.4.2. False Negatives. Table 4 also shows the False Neg-
ative and False Negative Rate (FNR), i.e., FN/(TP+FN) of
three approaches using the BlackFan dataset. Let us start
with Silent Spring, which only reports three true positives.
The main reasons for such a low number of TPs are twofold.
First, Silent Spring only supports detecting direct gadgets
from initially detected undefined properties lookups to the
sinks without consideration of chained gadgets. 22 gadgets
in the BlackFan dataset are chained gadgets that require
polluting multiple undefined properties to reach the sink.
Silent Spring detects none of these gadgets. Second, the
underlying static analysis engine, i.e., CodeQL, cannot an-
alyze many client-side JavaScript features, which include
dynamically-generated JavaScript code and inter-procedural
data-flow tracking.

We then discuss ProbetheProto, which has 19 FNs for
the dataset. There are two main reasons for FNs. First, some
chained gadgets require specific values to trigger the next
gadget. Since such values are not in the predefined set of
ProbetheProto, it cannot detect such gadget chains. Second,
the final payload to the sink may need some contexts to close
the string, e.g., double quotes and comments. ProbetheProto
does not support such context-award payload generation,
thus leading to a few FNs.

In the end, we also discuss the FNs of GALA. GALA
also misses the detection of nine gadgets reported in the
BlackFan dataset. The main reason is that GALA does not
find any defined values for such gadgets among the Top 1
million websites. In the future, we may consider adding test
cases of JavaScript libraries and integrating value testing
with fuzzing to better generate such values.

5.5. RQ4: Performance

In this research question, we study the performance of
GALA and break down the performance by different phases.
Specifically, we evaluate the performance of GALA using
the Top 1,000 Tranco websites and measure the finish time
of each phase. Figure 7 shows the Cumulative Distribution
Function (CDF) of GALA in analyzing Top 1,000 websites.
At the same time, we also break down the analysis time by
phases in Table 5.

There are three things worth noting. First, Phase 1 is
the fastest because only undefined property lookups are
hooked without taint propagation. Second, the performances
of Phases 2 and 3 are similar, where Phase is slightly faster

TABLE 4: [RQ3] False Discovery Rate (FDR), i.e., FP/(TP+FP), and False Negative Rate (FNR), i.e., FN/(TP+FN), of
GALA and two state of the arts against two datasets, i.e., top 1,000 Tranco websites with no ground truth, and the BlackFan
dataset [13] with ground truth information. All numbers are the number of gadgets.

Approach Name

Top 1,000 Tranco websites BlackFan Dataset

Reported TP FP FDR (↓) TP FN All FNR (↓)
Total XSS Cookie-M URL-M

Silent Spring 37 1 1 0 0 36 97.30% 3 36 39 92.3%
ProbetheProto 1 1 1 0 0 0 0.00% 20 19 39 48.7%
GALA 15 15 3 6 6 0 0.00% 30 9 39 23.1%

TABLE 5: [RQ4] Analysis Time (Seconds) of GALA Bro-
ken Down by Different Phases.

Phases Phase 1 Phase 2 Phase 3 Total

Time 4.30±2.32 6.67±5.54 7.09±4.29 15.44±8.91

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Page Loading Time (seconds)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f D
om

ai
ns

 (%
)

Phase 1
Phase 2
Phase 3
All

Figure 7: [RQ4] Cumulative Distribution Function (CDF)
of the analysis time of GALA, which is broken down by
different phases for Top 1,000 Tranco websites.

because of the involvement of exploit generation in Phase
3. Sometimes, Phase 3 is faster than Phase 2 as shown in
Figure 7 because the first few trials of defined values may
lead to a successful exploit. Lastly, the median analysis time
of GALA is around 12.5 seconds, which is scalable to an
analysis on 1 million websites.

5.6. RQ5: Ablation Study

In this research question, we perform an ablation study
to assess the impact of the different components of GALA.
Specifically, our ablation study focuses on two components:
(i) defined value assignment, where GALA finds defined
values in phase 2 to replace undefined properties identified
from phase 1, and (ii) a context-aware exploit generator
that GALA adapts from a prior work [26] in phase 3.
Then, we describe three variants of GALA for the ablation
study: (i) not incorporating a context-aware exploit generator
(i.e., adopting fixed exploits); (ii) skipping the defined value
assignment phase (i.e., no phase 2); or (iii) excluding both.

TABLE 6: [RQ5] Ablation study of GALA with three
variants.

Variant Components # Gadgets
Defined Value Context-Aware

Assignment Exploit Generator

GALA 3 3 133
Variant (i) 3 7 77
Variant (ii) 7 3 0
Variant (iii) 7 7 0

We evaluated all three variants on the 133 zero-day
gadgets detected by GALA and the results are shown in
Table 6. Notably, variants (ii) and (iii), which skip the
value assignment procedure, result in zero gadget detected.
That is because the values adopted from other websites are
vital for the control- or data-flow to reach the sink, e.g.,
fulfilling complex if conditions. On the other hand, variant
(i)—which does not incorporate a context-aware exploit
generator—only detects 77 gadgets, because exploiting the
rest gadgets requires context-aware inputs, such as closing
HTML tags. As a comparison, the design of GALA takes
advantage of both defined value assignment and the context-
aware exploit generator, resulting in 133 gadgets detected.

5.7. RQ6: Defined Value Analysis

In this research question, we provide an analysis of the
defined values tested during the evaluation of GALA on
top one million Tranco websites. In total, GALA tested
65,630 unique defined values for 24,679 undefined prop-
erties, resulting in an average of 2.66 unique defined values
per undefined property. Eventually, 4,439 defined values
successfully resulted in gadget discovery. Apart from those
statistics, we present distribution of the tested defined values
in Figure 8. The results show that the majority of undefined
properties, with a count of 21,416, have only one unique
defined value, likely due to their limited use on real-world
websites. Following this, the counts drop sharply as the
number of defined values increases to two and three, and
continue to steadily decline as the number of defined values
exceeds three. This trend is driven by gadgets in libraries
that are more widely used, resulting in GALA discovering
more defined values in the same gadget used elsewhere. In
addition, there are 176 cases where the number of unique

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Unique Defined Values per Undefined Property

101

102

103

104

C
ou

nt
s (

Lo
g

Sc
al

e)

21,416

1,705

502

284

172

89
58 60

44

26 24
31

21

12
17

13

5

11

6 7

Figure 8: [RQ6] Distribution of unique defined values per
undefined property that were tested during the evaluation of
GALA on Tranco top one million websites.

defined values exceeds 20, which are not shown in the figure.
The large number of defined values in these cases is due to
gadgets utilizing keyed lookups wrapped in a for loop,
which leads to numerous defined values during iterations.

6. Discussion

In this section, we describe several commonly-asked
issues and GALA’s limitations.

6.1. Ethics

We responsibly reported all the findings, including zero-
day gadgets and end-to-end exploits, to the software de-
velopers and gave them 60 days to fix the issue. At the
time of paper submission, one gadget has been fixed by
their developer, three gadgets have been confirmed, and
the rest (including end-to-end exploits) have been reported.
Note that we choose to report our findings, i.e., end-to-
end exploits, to website developers even if the software
(i.e., JavaScript library) containing the zero-day gadget—
which is usually from a third party—has been fixed by their
developers. The reason is that third-party JavaScript library
is often not updated timely on websites. We believe that such
reporting will help websites quickly fix the vulnerability,
thus securing the World Wide Web.

6.2. Defenses

We discuss defenses from two perspectives, i.e., defenses
against prototype pollution, and those against gadgets.

6.2.1. Defense against Prototype Pollution Vulnerabili-
ties. On one hand, software developers and maintainers can
defend against gadgets by patching their root cause, i.e.,
prototype pollution vulnerability. Common practices include
freezing the prototypical object and checking the prototype
chain lookup. One can refer to prior works [4], [6] on such
defenses. However, while patching prototype pollution is
needed and definitely required, we do not think it is enough
to just patch the vulnerability but not the gadgets due to the
following reasons:
• Defense against future included or discovered prototype
pollution vulnerabilities. Even if a prototype pollution
vulnerability is either patched or absent, people may find
new vulnerabilities or the inclusion of new third-party
software may introduce new prototype pollution vulner-
abilities. Patching gadgets will help the website defend
against both scenarios.
• Defense against prototype pollution vulnerabilities in
other websites with the same library. A third-party
software containing prototype pollution gadgets may be
used by many websites, e.g., the “fbevents.js” library.
Therefore, patching a prototype pollution gadget will help
inform these websites and future ones who use this library
with the gadget.

6.2.2. Defense against Prototype Pollution Gadgets. On
the other hand, developers and maintainers can patch the
gadget as a direct defense. This can be done at either the
source or the sink as discussed below. There are pros and
cons for each patching method.
• Source Patching. Such patching is done at the place
where undefined values are returned. For example,
just like what Meta does in Figure 1, one can use
hasOwnProperty to check whether the returned value
belongs to the prototypical object and deny access if it
does. The advantage is that even if there are future sinks
(other than the discovered gadget) that are found, the
patch can still defend against the new gadget. Correspond-
ingly, the disadvantage is that if there are other sources
(i.e., undefined values) flowing to the same sink, the patch
is ineffective.
• Sink Patching. Such patching is done at the place where
the consequence happens, e.g., cross-site scripting and
cookie manipulation. For example, one can add a sanitiza-
tion function to filter the parameter of eval function and
avoid adversary-injected values. Similarly, the advantage
is that if there are new sources, the patch is still effective;
at the same time, if the current source flows to other sinks,
it is not.

Since both gadget patching methods have pros and cons,
one possible solution is to add double patching, i.e., patching
both the sources and the sinks, if possible.

6.3. Soundness and Completeness

GALA, just like prior work, e.g., ProbetheProto [4], has
no false positives, but false negatives still exist. That is,

GALA is sound but not complete. The reason for soundness
is that GALA is a dynamic approach that generates exploits
for found gadgets. Since gadgets are guaranteed to be ex-
ploitable together with a prototype pollution vulnerability,
GALA has no FPs.

At the same time, GALA has false negatives due to
the following reasons. First, while GALA can find defined
values for many undefined properties, it is still possible
that such defined values do not exist. It could be that
the functionality is rarely used, used in a different context
(like server-side code), or dead code. Currently, GALA has
already adopted pre-defined values as inputs. Then, one
possible future solution is to adopt test cases that come
with third-party libraries for defined value extractions. We
will leave this approach as future works of GALA. Second,
since GALA is a dynamic approach, it may have code
coverage issues to reach certain codes containing the sink or
undefined properties. Note that absolute high code coverage
may not be helpful for GALA because GALA needs to
reach the sources and sinks. In the future, guided or directed
fuzzing may also be combined with GALA for better code
coverage. Lastly, GALA currently only taints string values
just like prior works [4], [25], [26]. This is because client-
side consequences are caused by string values. While other
types, such as Array and Object, may be possible for server-
side consequences, we will leave them as future works.

6.4. Other Consequences

The in-scope consequences, just like ProbetheProto [4],
include XSS, Cookie manipulations, and URL manipula-
tions. At the same time, we acknowledge that there could be
consequences for other client-side vulnerabilities like cross-
site request forgery and privilege escalation since prototype
pollution changes the control- and data-flows of a victim
program. It is worth noting that such consequences are not
studied manually either (e.g., the BlackFan repository [13]
does not have such consequences). Therefore, we will leave
the exploration of other consequences as our future work.

7. Related Work

We describe related work from three aspects: prototype
pollution, program analysis for web security, and general
web security.

7.1. Prototype Pollution and its Gadgets

Prototype pollution, first proposed by Arteau [1], has
gathered increasing attention in recent years. Prototype
pollution is specific to JavaScript and other programming
languages that utilize prototypes for object-oriented features.
It can lead to various severe consequences, such as Remote
Code Execution (RCE) on server-side [3], [5], [6], [30] and
XSS on client-side [4]. There are many existing works on
prototype pollution and gadget detection. On the server side,
Silent Spring [6] leverages CodeQL [7] to do static multi-
label taint analysis and uses dynamic analysis to collect

the undefined properties. However, their approach mainly
depends on static analysis and thus leads to a lot of false
positives. Besides, their approach can not solve chained
gadgets. Mikhail et al. [31] uses a dynamic AST-level in-
strumentation and supports visualization of code flows in an
IDE, which helps the manual analysis for exploit generation.
UoPF [5] applies concolic execution and constraint solver
to detect chained gadgets. However, their approach fails to
solve complex constraints.

On the other hand, the only prior work for client-side
prototype pollution and gadget detection, ProbetheProto [4],
utilizes an instrumented Chromium to do taint analysis on a
large scale of websites. We highlight the novelty of GALA
over ProbetheProto by explaining the three steps of an end-
to-end exploit and clarifying the distinct contributions of
both approaches. First, an adversary locates and exploits
an existing prototype pollution vulnerability to inject val-
ues. Second, the adversary alters the control- or data-flow
by adjusting the injected values so that they can flow to
a sink. Lastly, the adversary exploits the sink function
(e.g., injecting XSS payloads). ProbeTheProto contributes
primarily to the first step, detecting prototype pollution.
In contrast, GALA excels in the second and third steps
by replacing undefined properties with elsewhere-defined
values, and by utilizing a context-aware exploit generator
adapted from [26], whereas ProbeTheProto relies on prede-
fined values. As a result, the exploits adopted by GALA are
more comprehensive than ProbetheProto’s fixed value set,
leading to the discovery of more zero-day gadgets.

7.2. Program Analysis for Web Security

Program Analysis has long been leveraged by security
researchers to unveil bugs and vulnerabilities in source code
or binary code. We describe program-analysis techniques—
dynamic analysis, static analysis and hybrid analysis—that
are commonly applied in the realm of Web security and
privacy, particularly of vulnerability detection for JavaScript.

7.2.1. Dynamic Analysis. Dynamic analysis leverages con-
crete inputs to analyze program code. A research trend
is to dynamically analyze program code from the source
code level, e.g., Jalangi [32]. It is among the early-stage
dynamic-analysis tools available for analyzing and testing
JavaScript applications. The success of Jalangi has inspired
other works, e.g., JITProf [33], to develop analysis tools
on top of Jalangi. More recently, Xiao et al. [34] propose
a framework named LYNX based on Jalangi to detect a
novel attack on JavaScript dubbed hidden property abusing.
Liu et al. [5] propose to detect chained server-side gad-
gets leveraging Jalangi for concolic execution. Additionally,
Liu et al. [35] extend Jalangi on WeChat as an industry
practice to diagnose defects in WeChat mini-apps. Despite
its flexibility, our experience with using Jalangi2 on client-
side JavaScript revealed two major issues: 1) performance
overhead; and 2) reliability of instrumented JavaScript.
Firstly, the Jalangi2 wraps all the built-in operations with
function calls, which results in a slowdown of 3x-100x of

the program execution [36]. This makes it unsuitable for our
large-scale analysis. Secondly, the instrumented JavaScript
grows approximately 60x in size (e.g., a library with 30k
lines becomes 80MB after instrumentation), often leading to
request timeouts when the file is received from the network.

Another research trend of dynamic analysis on
JavaScript is to modify a modern JavaScript engine to con-
duct taint tracking for the purposes of defect or vulnerability
detection. In the early stage, Lekies et al. [24] present an au-
tomated system on top of JavaScript V8 engine to detect and
validate DOM-based Cross-Site Scripting (XSS) vulnerabil-
ities. Later, Melicher et al. [25] adopt the engine by Lekies
et al. to perform DOM-XSS analysis on multiple sources
and sinks. Steffens et al. [26] further introduce cookie and
Web storage to the analysis engine. Kang et al. [4] invent
object taints and joint taint flows for the analysis on client-
side prototype pollution and its consequences, e.g., XSS,
cookie manipulation and URL manipulation. Following this
research trend, our work implements the dynamic taint
analysis on a modified Chromium for effective and precise
taint tracking.

7.2.2. Static Analysis. On the other hand, static analysis
usually leverages abstract interpretation and symbolic exe-
cution that do not require concrete inputs. Static analysis
explores all possible execution paths of the program and
thus can reach higher code coverage compared to dynamic
analysis. Many works [2], [37]–[42] have proposed static-
analysis frameworks or platforms for the detection of bugs,
malware or vulnerabilities. More recently, researchers [3],
[30], [43], [44] have proposed to represent the program
code as novel graphs for static analysis. To make static
analysis scalable, Kang et al. [45] leverage the bottom-up
and top-down abstract interpretation on control- and data-
flow graphs. While those methods have high performance on
server-side JavaScript vulnerability detection, they are not
scalable to detect client-side gadgets, which involve heavy
dynamic features and easily make the methods timeout.

7.2.3. Hybrid Analysis. To overcome the disadvantages of
both static and dynamic analysis, researchers have recently
proposed hybrid analysis, i.e., combining static with dy-
namic analysis, to have high code coverage and achieve
a better performance at the same time. Zhang et al. [46]
leverage results from dynamic analysis as additional sources
for static analysis to preserve context sensitivity when de-
tecting taint data flows in Android apps. Shcherbakov et
al. [6] leverage dynamic analysis to assist static analysis
for the detection of JavaScript gadgets leading to Remote
Code Execution. Xiao et al. [34] introduce static analysis
to explore potential object properties in JavaScript to guide
the execution of dynamic analysis. While the hybrid anal-
ysis sounds promising, it still faces scalability issues when
applied on client-side detection. We leave incorporating the
hybrid analysis in GALA for future work.

7.3. General Web Security

Our work consider three types of gadgets as in-scope:
DOM-based XSS, cookie manipulation and URL manipula-
tion. Prior works on DOM-based XSS have investigated its
prevalence [24], [25], [47], [48], different ways to inject
payloads [4], [27], [49] and its mitigations [43], [47], [50]–
[52]. Cookie-related security and privacy concerns have also
gathered interests, leading to investigations on CSRF [44],
policy violations [53], [54], and session fixation [14], [15].
Finally, studies on URL manipuation [16] also propose novel
attacks and effective mitigations. As a comparison, these
works focus on each individual vulnerability itself instead
of those that are caused by prototype pollution. Instead,
GALA finds such consequences that are caused by prototype
pollution, thus being called prototype pollution gadgets.

8. Conclusion

Prototype pollution vulnerabilities, just like low-level
memory-related vulnerabilities, need gadgets to achieve fur-
ther consequences. Previously static approaches like Silent
Spring [6] often have large false positives (FPs), which
need extensive human work to filter FPs. Furthermore, pre-
vious dynamic approaches, such as ProbetheProto [4] and
UoPF [5], often face difficulties in bypassing challenging
constraints with complex values. Furthermore, UoPF is also
a server-side concolic execution framework and its adapta-
tion to the client side is largely unknown.

In this paper, we design and implement GALA, an open-
source dynamic analysis framework, to detect client-side
prototype pollution gadgets. Our key insight is to borrow
defined values from other executions, which could happen
in another website with the same script or the same website
with different call stacks and/or parameters. GALA has
three phases: first, GALA detects undefined values using
an instrumented JS runtime with property lookup APIs
being hooked; second, GALA detects corresponding defined
values with the instrumented JS runtime and assigns such
values to those that are originally undefined; lastly, GALA
repeats the process until the sink is reached and then gen-
erates exploits for gadget validation.

We evaluated GALA against the Top 1 million websites
based on Tranco List, which revealed 133 zero-day gadgets
and 23 end-to-end exploitable domains. We responsibly
disclosed our findings to software developers and gave them
60 days for a fix. Currently, several gadgets, including
those from Meta and Vue.js, have already been fixed. We
also show that GALA outperforms prior works, namely
ProbetheProto and Silent Spring in terms of lower or similar
false negatives and positives, when the prior works are
adapted to detect client-side gadgets.

In the future, we envision two types of future works. On
one hand, we can integrate existing test cases of JavaScript
libraries with GALA so that they can provide more defined
values especially when such values are not provided by real-
world websites. On the other hand, we can also integrate

directed fuzzing with GALA to provide more values and
lead the execution to the sink.

Acknowledgments

We would like to thank anonymous shepherd and review-
ers for their helpful comments and feedback. This work was
supported in part by National Science Foundation (NSF) un-
der grants CNS-21-54404 and CNS-20-46361 and a Defense
Advanced Research Projects Agency (DARPA) Young Fac-
ulty Award (YFA) under Grant Agreement D22AP00137-
00 as well as an Amazon Research Award (ARA) 2021
and gifts from Visa Research. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of NSF, DARPA,
Amazon, or Visa Research.

References

[1] O. Arteau, “Prototype pollution attack in nodejs application,”
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/
master/paper/JavaScript prototype pollution attack in NodeJS.pdf,
2018, online; Accessed on 18 Feb 2021.

[2] H. Y. Kim, J. H. Kim, H. K. Oh, B. J. Lee, S. W. Mun, J. H. Shin,
and K. Kim, “DAPP: automatic detection and analysis of prototype
pollution vulnerability in node. js modules,” International Journal of
Information Security, pp. 1–23, 2021.

[3] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting node.js prototype
pollution vulnerabilities via object lookup analysis,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engi-
neering, 2021, pp. 268–279.

[4] Z. Kang, S. Li, and Y. Cao, “Probe the proto: Measuring client-
side prototype pollution vulnerabilities of one million real-world web-
sites,” in 2022 Network and Distributed Systems Security Symposium
(NDSS), 2022.

[5] Z. Liu, K. An, and Y. Cao, “Undefined-oriented programming: De-
tecting and chaining prototype pollution gadgets in node.js template
engines for malicious consequences,” in 2024 IEEE Symposium on
Security and Privacy, 2024.

[6] M. Shcherbakov, M. Balliu, and C.-A. Staicu, “Silent spring: Proto-
type pollution leads to remote code execution in node.js,” in 32nd
USENIX Security Symposium, 2023.

[7] “Codeql,” https://codeql.github.com/, accessed: 2022-12-14.

[8] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A z3-based string solver
for web application analysis,” in Int. Symp. Foundations of Software
Eng. (FSE), 2013, 2013.

[9] Google. The Chromium Projects. http://www.chromium.org/Home.

[10] Follow-my-Flow-GaLA, “Follow My Flow: Unveiling Client-Side
Prototype Pollution Gadgets from One Million Real-World Web-
sites ,” https://github.com/Follow-my-Flow-GaLA/analysis, 2024, ac-
cessed: 2024-09-24.

[11] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski,
and W. Joosen, “Tranco: A research-oriented top sites ranking
hardened against manipulation,” Proceedings of 2019 Network and
Distributed System Security Symposium, 2019. [Online]. Available:
http://dx.doi.org/10.14722/ndss.2019.23386

[12] National Vulnerability Database, “CVE-2024-6783,” https://nvd.nist.
gov/vuln/detail/CVE-2024-6783, 2024, accessed: 2024-09-16.

[13] S. Bobrov, “Client-side prototype pollution gadgets,”
https://github.com/BlackFan/client-side-prototype-pollution/blob/
master/gadgets/sprint.md, 2020, online; Accessed on 18 Feb 2021.

[14] mwood, “Session fixation,” https://owasp.org/www-community/
attacks/Session fixation, 2024, online; Accessed on 14 Apr 2024.

[15] M. Squarcina, P. Adão, L. Veronese, and M. Maffei, “Cookie crum-
bles: Breaking and fixing web session integrity,” in 32nd USENIX
Security Symposium, 2023.

[16] P. Sharma and B. Nagpal, “A Study on URL Manipulation At-
tack Methods and Their Countermeasures,” International Journal of
Emerging Technology in Computer Science & Electronics (IJETCSE)
ISSN: 0976-1353 Volume 15 Issue 1 –MAY 2015, vol. 15, p. 116–119,
2015.

[17] “Url manipulation attacks,” https://www.idc-online.com/technical
references/pdfs/data communications/URL manipulation attacks.
pdf, 2024, online; Accessed on 14 Apr 2024.

[18] N. Carlini and D. Wagner, “{ROP} is still dangerous: Breaking
modern defenses,” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 385–399.

[19] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of {Coarse-Grained}{Control-Flow}
integrity protection,” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 401–416.

[20] M. Schloegel, T. Blazytko, J. Basler, F. Hemmer, and T. Holz,
“Towards automating code-reuse attacks using synthesized gadget
chains,” in Computer Security–ESORICS 2021: 26th European Sym-
posium on Research in Computer Security, Darmstadt, Germany,
October 4–8, 2021, Proceedings, Part I 26. Springer, 2021, pp.
218–239.

[21] S. Han, S.-J. Kim, W. Shin, B. J. Kim, and J.-C. Ryou, “{Page-
Oriented} programming: Subverting {Control-Flow} integrity of
commodity operating system kernels with {Non-Writable} code
pages,” in 33rd USENIX Security Symposium (USENIX Security 24),
2024, pp. 199–216.

[22] Google. Ignition. https://v8.dev/docs/ignition.

[23] Ecmascript® 2025 language specification. https://tc39.es/ecma262/.

[24] S. Lekies, B. Stock, and M. Johns, “25 million flows later: large-
scale detection of dom-based xss,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, 2013,
pp. 1193–1204.

[25] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia, “Riding
out domsday: Towards detecting and preventing dom cross-site
scripting,” in Network and Distributed System Security Symposium,
2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:
3389782

[26] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t Trust The
Locals: Investigating the Prevalence of Persistent Client-Side Cross-
Site Scripting in the Wild,” in Network and Distributed System Secu-
rity Symposium (NDSS), 2019, https://publications.cispa.saarland/id/
eprint/2744.

[27] A. S. Buyukkayhan, C. Gemicioglu, T. Lauinger, A. Oprea,
W. Robertson, and E. Kirda, “What’s in an exploit? an empirical
analysis of reflected server XSS exploitation techniques,” in 23rd
International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020). San Sebastian: USENIX Association, Oct.
2020, pp. 107–120. [Online]. Available: https://www.usenix.org/
conference/raid2020/presentation/buyukkayhan

[28] MongoDB. Mongodb. https://www.mongodb.com.

[29] Usage statistics and market share of Vue.js Version 2 for websites.
https://w3techs.com/technologies/details/js-vuejs/2.

[30] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining node.js vulnerabilities
via object dependence graph and query,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 143–160.

https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://codeql.github.com/
http://www.chromium.org/Home
https://github.com/Follow-my-Flow-GaLA/analysis
http://dx.doi.org/10.14722/ndss.2019.23386
https://nvd.nist.gov/vuln/detail/CVE-2024-6783
https://nvd.nist.gov/vuln/detail/CVE-2024-6783
https://github.com/BlackFan/client-side-prototype-pollution/blob/master/gadgets/sprint.md
https://github.com/BlackFan/client-side-prototype-pollution/blob/master/gadgets/sprint.md
https://owasp.org/www-community/attacks/Session_fixation
https://owasp.org/www-community/attacks/Session_fixation
https://www.idc-online.com/technical_references/pdfs/data_communications/URL_manipulation_attacks.pdf
https://www.idc-online.com/technical_references/pdfs/data_communications/URL_manipulation_attacks.pdf
https://www.idc-online.com/technical_references/pdfs/data_communications/URL_manipulation_attacks.pdf
https://v8.dev/docs/ignition
https://tc39.es/ecma262/
https://api.semanticscholar.org/CorpusID:3389782
https://api.semanticscholar.org/CorpusID:3389782
https://publications.cispa.saarland/id/eprint/2744
https://publications.cispa.saarland/id/eprint/2744
https://www.usenix.org/conference/raid2020/presentation/buyukkayhan
https://www.usenix.org/conference/raid2020/presentation/buyukkayhan
https://www.mongodb.com
https://w3techs.com/technologies/details/js-vuejs/2

[31] M. Shcherbakov, P. Moosbrugger, and M. Balliu, “Unveiling the
invisible: Detection and evaluation of prototype pollution gadgets
with dynamic taint analysis,” arXiv preprint arXiv:2311.03919, 2023,
https://arxiv.org/pdf/2311.03919.pdf.

[32] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488–498.

[33] L. Gong, M. Pradel, and K. Sen, “Jitprof: Pinpointing jit-unfriendly
javascript code,” in Proceedings of the 2015 10th joint meeting on
foundations of software engineering, 2015, pp. 357–368.

[34] F. Xiao, J. Huang, Y. Xiong, G. Yang, H. Hu, G. Gu, and W. Lee,
“Abusing hidden properties to attack the node. js ecosystem,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2951–
2968.

[35] Y. Liu, J. Xie, J. Yang, S. Guo, Y. Deng, S. Li, Y. Wu, and
Y. Liu, “Industry practice of javascript dynamic analysis on wechat
mini-programs,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 1189–
1193.

[36] Jalangi2 Tutorial Sildes: A Dynamic Analysis Framework for
JavaScript. https://manu.sridharan.net/files/JalangiTutorial.pdf.

[37] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis
tool for detecting web application vulnerabilities,” in 2006 IEEE
Symposium on Security and Privacy (S&P’06). IEEE, 2006, pp.
6–pp.

[38] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for
javascript,” in Static Analysis: 16th International Symposium, SAS
2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings 16.
Springer, 2009, pp. 238–255.

[39] M. Madsen, B. Livshits, and M. Fanning, “Practical static analysis of
javascript applications in the presence of frameworks and libraries,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 499–509.

[40] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sar-
racino, B. Wiedermann, and B. Hardekopf, “Jsai: A static analysis
platform for javascript,” in Proceedings of the 22nd ACM SIGSOFT
international symposium on Foundations of Software Engineering,
2014, pp. 121–132.

[41] M. Madsen, F. Tip, and O. Lhoták, “Static analysis of event-driven
node. js javascript applications,” ACM SIGPLAN Notices, vol. 50,
no. 10, pp. 505–519, 2015.

[42] B. B. Nielsen, B. Hassanshahi, and F. Gauthier, “Nodest: feedback-
driven static analysis of node. js applications,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engi-
neering, 2019, pp. 455–465.

[43] A. Fass, M. Backes, and B. Stock, “Jstap: A static pre-filter for
malicious javascript detection,” in Proceedings of the 35th Annual
Computer Security Applications Conference, 2019, pp. 257–269.

[44] S. Khodayari and G. Pellegrino, “{JAW}: Studying client-side
{CSRF} with hybrid property graphs and declarative traversals,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
2525–2542.

[45] M. Kang, Y. Xu, S. Li, R. Gjomemo, J. Hou, V. Venkatakrishnan,
and Y. Cao, “Scaling javascript abstract interpretation to detect and
exploit node. js taint-style vulnerability,” in 2023 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, 2023, pp.
1059–1076.

[46] X. Zhang, X. Wang, R. Slavin, and J. Niu, “Condysta: Context-
aware dynamic supplement to static taint analysis,” in 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 2021, pp. 796–
812.

[47] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu,
and P. Saxena, “Auto-patching dom-based xss at scale,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 272–283. [Online].
Available: https://doi.org/10.1145/2786805.2786821

[48] DOMinator. https://github.com/wisec/DOMinator.

[49] S. Khodayari and G. Pellegrino, “It’s (dom) clobbering time: Attack
techniques, prevalence, and defenses,” in 2023 IEEE Symposium on
Security and Privacy, 2023.

[50] D. Klein, T. Barber, S. Bensalim, B. Stock, and M. Johns, “Hand
sanitizers in the wild: A large-scale study of custom javascript sani-
tizer functions,” in 2022 IEEE 7th European Symposium on Security
and Privacy (EuroS&P), 2022.

[51] D. Klein and M. Johns, “Parse me, baby, one more time: Bypassing
html sanitizer via parsing differentials,” in 2024 IEEE Symposium on
Security and Privacy, 2024.

[52] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, “Precise
Client-side Protection against DOM-based Cross-Site Scripting,” in
Proceedings of the 2014 USENIX Security Symposium, 2014.

[53] M. Smith, A. Torres-Agüero, R. Grossman, P. Sen, Y. Chen, and
C. Borcea, “A study of gdpr compliance under the transparency and
consent framework,” in WWW ’24: Proceedings of the ACM on Web
Conference 2024, 2024.

[54] A. Rasaii, D. Gosain, and O. Gasser, “Thou shalt not reject: Analyzing
accept-or-pay cookie banners on the web,” in IMC ’23: Proceedings
of the 2023 ACM on Internet Measurement Conference, 2023.

https://arxiv.org/pdf/2311.03919.pdf
https://manu.sridharan.net/files/JalangiTutorial.pdf
https://doi.org/10.1145/2786805.2786821
https://github.com/wisec/ DOMinator

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper proposes GALA, a dynamic analysis ap-
proach to detect prototype pollution data flows from un-
defined variables to sensitive sinks, by borrowing defined
values from other webpages. The authors evaluated GALA
on top 1M websites, finding several new prototype pollution
gadgets.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field
• Identifies an Impactful Vulnerability

A.3. Reasons for Acceptance

1) The paper proposes a novel approach to proto-
type pollution gadget detection, called GALA, that
borrows defined values from existing webpages
to guide dynamic analysis in locating data flow
gadgets from undefined variables to sensitive sinks.
GALA will be made publicly available to enable
future research.

2) The paper provides a baseline comparison of
GALA with Silent Spring and ProbeTheProto for
gadget detection, showing a modest improvement
in reducing false positives and false negatives.

3) The analysis of the top 1M websites provides useful
insights into prototype pollution gadgets, uncover-
ing numerous unknown vulnerabilities in the wild
that affect, among others, Meta’s software and Vue
framework, demonstrating GALA’s real-world ap-
plicability.

A.4. Noteworthy Concerns

1) The evaluation lacks statisticical details on the
number of domains where undefined value re-
placement was possible as well as cases where
it was successful, i.e., broader code coverage was
achieved because of this approach.

2) GALA only relies on values collected during the
crawling phase and does not mutate these values
to explore different code execution paths, missing
more complex gadgets that require specific values
assigned to undefined properties to be reached (e.g.,
23% false negative rate in Table 4).

3) The BlackFan dataset used for false negative eval-
uation in RQ3 is rather small and may not fully
represent the variety of prototype pollution gadgets
that exist in the broader population of web appli-
cations. In addition, it contains many similar pay-
loads, potentially introducing bias toward specific
pollution types and unfairness toward other tools
considered as baseline.

4) The exploration of prototype pollution conse-
quences is not systematic; the paper considers spe-
cific issues such as XSS and URL/cookie manipu-
lations but overlooks others like client-side request
forgery and privilege escalation.

5) The paper assumes that the target website has a
pre-existing prototype pollution vulnerability (i.e.,
an injection point), which allows an attacker to
manipulate object properties. Without this known
vulnerability, the gadgets detected by GALA would
not be exploitable, as GALA only identifies gadgets
rather than the vulnerabilities themselves.

Appendix B.
Response to the Meta-Review

We thank anonymous reviewers for their insightful com-
ments and the shepherd for the meta-review! We acknowl-
edge the five noteworthy concerns raised in the meta-review
and leave them for future works; meanwhile, we provide
additional responses to the concerns.

1) We report a total of 471,788 websites where un-
defined value replacement was possible during the
evaluation of GALA on top one million Tranco
websites. Then, to evaluate impacts of GALA’s
value replacement on code coverage, we tested
GALA on 25 randomly-selected Tranco domains.
We utilized Chrome DevTools to measure the lines
of code (LoC) that were executed as the metric for
code coverage. By comparing the code coverage
with and without GALA deployed, we observed 19
out of 25 domains have a code coverage increase.

2) We leave the incorporation of mutation techniques,
such as directed fuzzing and adding test cases, for
future work. We further note that the false negatives
(FNs) of GALA as reported in Table 4 are essen-
tially complex and challenging to detect and exploit
even with the mutation techniques. For example, the
reason for one FN is the involvement of multiple
properties and a complex Array structure, which
cannot be resolved by mutation techniques.

3) We discuss three things about the BlackFan dataset:
(i) despite its size, it is the only publicly available
dataset for client-side prototype pollution gadgets
and that is the best we can do; (ii) the gad-
gets are representative because BlackFan’s authors
curated the dataset using gadgets from various
real-world applications; (iii) exploiting a gadget
(e.g., __proto__[prop]=alert(1)) requires

not only payloads (alert(1)) but also property
names (prop), and 37 out of 39 (94.87%) of the
property names in the BlackFan gadgets’ proofs of
concept (PoCs) are distinct. Therefore, the exploits
for the gadgets in the dataset are diversified.

4) The taint engine that GALA utilizes is adopted
from the one used in prior work [4], which only ex-
plores XSS and cookie/URL manipulations as three
in-scope consequences. We leave the exploration of
other consequences such as CSRF for future work.

5) We would like to emphasize that the detection
of gadget alone is an important research ques-
tion across different fields. Two prior works on
server-side gadget detection [5], [6] also assume
the existence of prototype pollution vulnerabilities.
Similarly, researches on the detection of gadgets for
memory-related vulnerabilities [18]–[21] assume
the presence of memory-safety vulnerabilities such
as buffer overflows. More details can be found in
section 2.3.

	Introduction
	Research Contributions
	Paper Organization

	Overview
	Background
	A Motivating Example
	Challenges and How GaLA Solves Them

	Threat Model
	Out-of-the-scope Problems

	Design
	System Architecture
	Phase 1: Locating Undefined Properties
	Detecting Undefined Properties
	Recording Undefined Properties

	Phase 2: Assigning Defined Values
	Discovering Defined Values
	Dynamic Taint Propagation
	Value Assignment

	Phase 3: Guiding Dataflow for Originally Undefined Properties
	Flow Validation
	Payload Generation
	Gadget Validation

	Implementation
	Evaluation
	Research Questions and Experimental Setup
	RQ1: Zero-day Gadgets Found by GaLA
	Statistics and Breakdowns
	Case Studies

	RQ2: Zero-day End-to-end Exploits
	Statistics
	A Case Study

	RQ3: False Positives and Negatives of GaLA vs. Baselines
	False Positives
	False Negatives

	RQ4: Performance
	RQ5: Ablation Study
	RQ6: Defined Value Analysis

	Discussion
	Ethics
	Defenses
	Defense against Prototype Pollution Vulnerabilities
	Defense against Prototype Pollution Gadgets

	Soundness and Completeness
	Other Consequences

	Related Work
	Prototype Pollution and its Gadgets
	Program Analysis for Web Security
	Dynamic Analysis
	Static Analysis
	Hybrid Analysis

	General Web Security

	Conclusion
	References
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix B: Response to the Meta-Review

