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Abstract—Open-source software (OSS) is widely reused in
Internet of Things (IoT) devices, leading to widespread N-Day
vulnerabilities when outdated components remain unpatched.
Existing methods typically encode features of different Com-
mon Vulnerabilities and Exposures (CVEs) within a shared
representation space. However, the model’s limited capacity,
combined with the new vulnerability features, can disrupt previ-
ously learned patterns. Minimal code modifications in tiny-patch
vulnerabilities are often overshadowed by variations introduced
by different compilation settings, making it more difficult to
distinguish vulnerable functions from their patched counterparts.
This paper introduces ISGraphVD, a novel graph-based and
function-level vulnerability detection approach that supports
cross-compilation settings and enhances detection accuracy. By
modeling each CVE independently through a one-model-per-CVE
strategy, ISGraphVD reduces feature interference and improves
detection accuracy across diverse CVEs. To better detect tiny-
patch vulnerability, we propose ISGraph, a fine-grained graph
representation that models variable dependencies within and
across basic blocks by integrating control flow analysis. Then,
ISGraphVD utilizes a Graph Matching Network (GMN) with a
cross-graph attention mechanism to identify critical vulnerability
patterns. Experiments on IoT OSS projects show that IS-
GraphVD outperforms state-of-the-art methods, achieving a 6.3
percentage-point (pp) accuracy improvement over the strongest
baseline, and real-world tests further validate its effectiveness in
IoT supply chains.

Index Terms—Binary Code, N-Day Vulnerabilities, Data De-
pendence, Open-Source Software, Vulnerability Detection, Graph
Matching Network

I. INTRODUCTION

Open-source software (OSS) is widely used in Internet of
Things (IoT) development due to its availability and flexibility,
accelerating time-to-market [1], which leads to widespread
code reuse in IoT devices. Maintenance of OSS usually
patches disclosed vulnerabilities through version updates.
However, IoT devices face constraints in computational and
storage resources, limiting the implementation of complex
security measures and monitoring. As a result, devices may run
outdated software with N-Day vulnerabilities for extended pe-
riods, creating significant attack windows for hackers [2], [3].
Thus, effectively detecting widespread N-Day vulnerabilities
caused by code reuse in IoT devices is crucial.

Due to varying usage requirements, IoT firmware is de-
veloped by different architectures, compilers, compiler ver-
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sions, and optimization levels, making the detection of N-Day
vulnerabilities in IoT devices more challenging. Binary Code
Similarity Detection (BCSD) enables determining whether two
binary code fragments (e.g., functions) are semantically similar
or homologous. Therefore, it can be used to identify N-day
vulnerabilities in IoT firmware by detecting the presence of
functions that are semantically similar to vulnerable functions
from OSS. Recently, deep learning techniques have gained
popularity in BCSD for their high accuracy and ability to
automatically learn complex features [4]. These approaches
extract high-level representations from binary files, including
assembly instructions [5], [6], intermediate representations
(IR) [7], [8], structure [9]–[11], and data flow [12], etc.
These representations are subsequently encoded into numerical
vectors and processed by models to generate function-level
features. However, to identify similar functions across different
compilation settings, current approaches typically have two
limitations.

C1: Binaries are compiled under various compilation envi-
ronments (such as different architectures, compilers, compiler
versions, and optimization levels), resulting in binary func-
tions with the same semantics but different structures. Many
approaches have supported vulnerability detection across dif-
ferent compilation environments, but these methods [5], [7],
[13] typically employ a shared learning process where multiple
vulnerability characteristics are mixed within the same model,
rather than being independently modeled for each vulnerabil-
ity. This lack of isolation often limits the model’s ability to
generalize to new vulnerabilities, as incorporating additional
vulnerability features may interfere with previously learned
patterns, potentially reducing detection accuracy for known
CVEs.

C2: Effectively distinguishing between vulnerable functions
and their patched counterparts is crucial for reducing the false
positive rate (FPR) in vulnerability detection. Although some
studies [14]–[16] incorporate patch information to differentiate
patched and vulnerable functions, their detection accuracy
drops significantly for vulnerabilities with minimal modifica-
tions—sometimes involving only a single statement or even
just a variable. We refer to these as Tiny-Patch vulnerabilities.
This decline occurs because such minor patches are often
overshadowed by compilation-induced variations, making it
difficult to distinguish patched functions from their vulnerable



counterparts.
To overcome these limitations, we introduce ISGraphVD

(Identifier Sensitive Graph Vulnerability Detection), a novel
approach for binary vulnerability detection that robustly sup-
ports cross-compilation environments and improves detection
accuracy. To tackle the first limitation, ISGraphVD adopts a
one-model-per-CVE strategy, ensuring that the features of
different vulnerabilities are learned independently in separate
models rather than being mixed within a shared representation
space. This isolation mitigates the interference between differ-
ent vulnerability patterns and enhances the model’s general-
ization capability, as discussed in C1. Each model captures the
distinct signature of a specific CVE, enabling ISGraphVD to
build a signature-based model database for known vulnerabili-
ties. When analyzing a binary, ISGraphVD compares all func-
tions against the independently trained vulnerability models in
the database. Furthermore, when a new vulnerability emerges,
a dedicated model is trained and seamlessly integrated into the
database without affecting the detection of existing CVEs.

To address the second limitation, we propose a fine-grained
graph representation called the Identifier Sensitive Graph
(ISGraph). We introduce RT (Read-Tracking) dependencies,
which explicitly capture all read operations of a variable,
ensuring a more comprehensive representation of its usage.
Building on this, we further incorporate control flow struc-
tural analysis to model RT, RAW (Read-After-Write), WAR
(Write-After-Read), and WAW (Write-After-Write) dependen-
cies arising from variable read and write operations both
within and across basic blocks. These dependencies are then
explicitly represented as edges between variable nodes in the
CPG, enabling a multi-level semantic representation across
blocks, statements, expressions, and variables. Additionally,
ISGraphVD employs a Graph Matching Network (GMN) [17]
with a cross-graph attention mechanism to extract rich se-
mantic information from ISGraph and measure similarity
based on the distance between paired function embeddings.
Since vulnerabilities typically affect only a small portion
of a function, the critical subgraphs or paths in its graph
representation carry greater significance than other regions.
The attention mechanism in GMN assigns higher weights to
these key subgraphs, allowing the model to focus on the most
relevant vulnerability-related structures and effectively tackle
the challenge C2.

We implement a prototype of ISGraphVD and evaluate
it through experiments. We release the ISGraphVD pro-
gram1 to facilitate follow-up research. Results show that
ISGraphVD excels in vulnerability detection and supports
cross-compilation environments. Its superior performance over
VulSeeker [7], Gemini [18], and FIT [16] can be attributed
to the adoption of a one-model-per-CVE strategy, which
avoids feature interference and enhances the extraction of
vulnerability-specific code semantics. Furthermore, we use
ISGraphVD to conduct real-world experiments, validating
its practical applicability in detecting vulnerabilities across

1https://github.com/SQJDXLL/ISGraphVD

diverse software projects. Additionally, we perform time ef-
ficiency evaluations to assess the computational cost of our
approach. While the one-model-per-CVE strategy increases the
initial training cost, it proves to be a one-time investment, as
once trained, the model can efficiently detect vulnerabilities
without requiring frequent retraining. Experimental results
demonstrate that this trade-off is acceptable.

Our contributions are summarized as follows:

• We propose ISGraphVD, a graph-based vulnerability de-
tection approach designed to be robust across different ar-
chitectures, compilers, compiler versions, and optimization
settings. This approach ensures high detection accuracy
while minimizing false alarms.

• ISGraphVD introduces an innovative one-model-per-CVE
strategy, allowing each model to specialize in capturing the
unique characteristics of a specific CVE while preventing
interference between different vulnerability patterns.

• We are the first to highlight the impact of tiny-patch
vulnerabilities on detection accuracy. To address this,
we propose ISGraph, a fine-grained graph representation
method that models data dependencies within and across
basic blocks caused by read and write operations under
different control structures. By introducing RT dependen-
cies, ISGraph overcome the limitation of traditional CPGs,
where RAW dependencies capture only the first read after
a variable is written, failing to track multiple usages of the
same value across different locations.

• We implements a prototype of ISGraphVD, evaluated on
widely used open-source projects in IoT devices. Experi-
mental results demonstrate that ISGraphVD achieves supe-
rior performance in terms of AUC and detection accuracy
compared to existing methods. Furthermore, real-world
testing validates its effectiveness in accurately identifying
vulnerabilities across both pre- and post-patch versions.

II. OVERVIEW

In this section, we explain why we chose pseudo-code to
represent binary files and discuss the main problems addressed
in this paper.

A. Unified Binary Representation

This paper adopts pseudo-code as a unified representa-
tion for binaries. Pseudo-code, typically generated through
decompilation tools such as IDA Pro [19] and Ghidra [20],
offers a human-readable approximation of the source code.
The decompilation process abstracts away hardware-specific
details, enabling cross-architecture analysis by translating
binaries from various architectures into a common C-like
language. Decompilation can reconstruct control structures,
such as different types of loops and branching structures.
Compared to assembly code and IR, it can recover higher-level
semantic information, making pseudo-code an ideal choice for
representing binary files in this study [21], [22].
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B. Motivation

This section explains the common problems in the current
work and our motivation for constructing a novel graph
representation for binary functions.

Fig. 1(A) depicts the source code for a motivating example
of a tiny-patch vulnerability, CVE-2015-8899, a denial-of-
service vulnerability in Dnsmasq version 2.75. The vulner-
ability was patched by adding a null pointer check “&&
addr”, preventing access to its members when variable addr
is null. The patch code accounts for only 0.64% of the
entire function. Fig. 1(B) and (C) compare the partial pseudo-
code of the vulnerable and patched versions, decompiled
from binaries compiled with different compilation settings,
including variations in architecture (ARM and AARCH64),
compiler (GCC and Clang), and optimization levels (O0 and
Os). In Fig. 1(B), the variable corresponding to addr is cp.
When cp is a null pointer, the condition “cp == 0LL” evaluates
to true. Consequently, in the if statement on line 13, the value
of “!v13” becomes false, preventing the execution of lines
14–21 and thereby avoiding access to the members of cp. In
Fig. 1(C), the variable corresponding to addr is a2. When a2 is
a null pointer, the condition “!a2” evaluates to true, making the
if statement on line 5 evaluate to true. As a result, execution
jumps to LABEL28, bypassing lines 7–16 and preventing
access to a2’s members. Despite structural differences in the
pseudo-code between B and C, their core semantics remain
consistent. However, when comparing the pre- and post-patch
versions in C, the fix consists of merely adding a “!a2” check,
which is far smaller than the differences caused by varying
compilation settings in B and C. This observation highlights
a key challenge in detecting tiny-patch vulnerabilities: while
the actual patch involves minimal code modifications, the
differences introduced by different compilation settings can
overshadow these subtle changes, making it harder to iden-
tify the actual fix-related modifications. Therefore, effectively
extracting and emphasizing vulnerability-related features from
the compilation-induced redundant information is essential for
improving detection accuracy.

Tiny-patch vulnerabilities often involve minimal code mod-
ifications, sometimes just a single statement or variable.
Enhancing variable-level sensitivity is crucial for capturing
key vulnerability patterns and detecting subtle patch-related
changes. By tracking how a variable’s value is read and
modified, we can extract more stable semant ic features
while reducing reliance on structural code changes. Code
Property Graphs (CPGs) [23] are language-agnostic program
representations that merge abstract syntax trees, control-flow
graphs, and data-flow graphs into a unified graph structure, and
are widely used for static vulnerability discovery in binary
analysis. Traditional CPGs employ RAW, WAR, and WAW
dependencies to track variable interactions. However, RAW
dependencies only capture the first read of a variable after
it has been written, failing to track multiple usages of the
same value across different locations—an essential factor in
understanding its full impact. To address this limitation, we

introduce Read-Tracking (RT) dependencies, which track all
read operations of a variable. This allows for a more compre-
hensive data flow analysis by capturing how a variable’s value
propagates across multiple usage points, rather than being
limited to its first read. Consequently, we model variable value
propagation using RT, RAW, WAR, and WAW dependencies.
Beyond intra-basic-block interactions, our approach incorpo-
rates inter-basic-block dependencies through control flow anal-
ysis. This enables the capture of long-range data flow patterns,
providing a more comprehensive representation of how a
vulnerability fix impacts a function’s execution logic rather
than just localized statement-level modifications. Furthermore,
while CPGs encode data dependencies through edges between
statement or expression nodes, they do not explicitly specify
which variable contributes to these dependencies. To overcome
this, we explicitly represent variable dependencies as edges
between variable nodes within the CPG, providing a more
comprehensive representation of data flow across multiple
granularities, including blocks, statements, expressions, and
variables.

Additionally, to precisely capture vulnerability-related fea-
tures from the fine-grained graph, we abandon rule-based
slicing methods and instead adopt GMN enhanced with a
cross-graph attention mechanism. This enables the model to ef-
fectively identify differences between vulnerable and patched
code while also recognizing similarities between vulnerable
code compiled with different compilation settings. As a result,
ISGraphVD learns more robust vulnerability feature represen-
tations, thereby improving detection accuracy across various
compilation settings.

III. PROPOSED APPROACH

A. Overall Framework

The overall workflow of ISGraphVD is shown in Fig. 2.
ISGraphVD is a function-level vulnerability detection ap-
proach with a “multi-model” design. Unlike most existing
methods that use a single model for all vulnerabilities, we
train a separate model for each CVE. Each model functions
as a dedicated checker, and when a zero-day vulnerability
is reported, a new checker is trained specifically for it and
added to the existing checker group. The process of training a
detection model proceeds as follows: First, the pre- and post-
patch versions of the project source code are used to construct
the dataset (see Section IV.B for details). Next, the binary files
in the dataset are decompiled into high-level representations.
ISGraphs are then extracted from these decompiled codes.
Subsequently, the ISGraphs are organized into similar and
dissimilar pairs and fed into GMN, which predicts whether
the input functions are patched or unpatched.

Assumption We assume that the source code of both
the pre-patch and post-patch versions can be accessed via
version control systems (e.g., Git). Our system mainly targets
vulnerabilities in the C language, which has more severe
vulnerabilities than other programming languages. Over the
past decade, 52.13% of reported vulnerabilities in open-source
software have been found in C/C++ [24]. Our design approach



Fig. 1. The figure illustrates the patch for CVE-2015-8899, a tiny-patch vulnerability in Dnsmasq 2.75. It compares decompiled pseudo-code from vulnerable
and patched binaries under different compilation settings, highlighting structural differences while preserving core semantics.

Fig. 2. Overall framework of ISGraphVD.

for graph-based vulnerability detection can also be applied to
other languages.

B. Identifier Sensitive Graph

We perform a variable-level analysis on pseudo-code and
trace variable value paths to uncover finer-grained semantic
information. We define four types of dependencies—read-
Tracking (Ert), read-after-write (Eraw), write-after-read
(Ewar), and write-after-write (Ewaw)—based on the se-
quence of variable read and write operations. We introduce
intra-block and inter-block dependencies to capture the control
semantics introduced by the control flow structure and to
address long-range dependencies. Finally, we incorporate these
dependencies into the ISGraph to effectively capture variable
interactions and enhance the representation of data flow.

In CPG, nodes with the ’Identifier’ attribute correspond to
program variables. We represent the dependencies between
variables as edges that connect the nodes corresponding to
these variables’ identifiers, thereby constructing the ISGraph.
The construction process is as follows: Variables in the
code are ordered top-to-bottom and left-to-right, defined as
X = {x1, x2, . . . , xn}, where for each xi ∈ X , the k-
th variable with the same name is xk

i . Given the pseudo-

code set P = {p1, p2, ..., pk}, we first parse each pi into a
CPG. The CPG comprises node set V and edge set Ecpg .
We model dependencies as edges and categorize them into
different-name edges (Edne) and same-name edges (Esne),
depending on whether variables share the same name. These
edges combine with the CPG to form the ISGraph G = (V,E),
where E = Ecpg ∪ Edne ∪ Esne.

Variable-level dependencies First, we introduce the
variable-level dependency relationship set Edep = Eraw ∪
Ewar ∪Ert for same-name variables and different-name vari-
ables both within and across statements. If a variable xk

i is
in the read state, its value comes from xk−1

i . Depending on
whether xk−1

i is in the read or write state, we establish the two
variable-level dependency relationships Ert and Eraw between
xk
i and xk−1

i :

Ert = {⟨xk
i , x

k−1
i ⟩ | xk

i is in read state,

xk−1
i is in read state}

Eraw = {⟨xk
i , x

k−1
i ⟩ | xk

i is in read state,

xk−1
i is in write state}

If a variable xk
i in statement s is in the write state, its value

is assigned by other variables in the same statement, denoted
as the set Xs. The dependency relationship Ewar is defined
as follows:

Ewar = {⟨xk
i , x

d
j ⟩ | xk

i , x
d
j ∈ Xs, x

k
i in write state,

xd
j in read state}

We reorder variables in the semantic context based on Edep.
For two variables connected by a dependency e ∈ Edep, the
variable read or written later is placed after the one read or
written earlier.

Intra-block and Inter-block dependencies Inter-block de-
pendencies arise from relationships among variables in critical
zones, such as block entry and exit points. We define two sets:
Bin = {xi | xi ∈ X,xi is the first variable in a block} and
Bout = {xi | xi ∈ X,xi is the last variable in a block}. The



terms “first” and “last” are based on the semantic context order.
We will discuss intra-block and inter-block dependencies in
detail, categorizing them by control flow structures to analyze
dependencies within and across blocks.

Sequential structures imply that code is executed line by
line and are the most basic and common structures. Intra-
block dependencies typically occur within these structures.
We consider two cases based on whether variables are in the
same statement: ① For variables in the same statement, depen-
dencies arise from operations such as assignment, arithmetic,
logical, relational operations, function calls, and array/list
accesses. These behaviors introduce two types of variable
dependencies: Ewar and Ert. ② Between different statements,
we only consider data dependencies among variables with the
same name, including Ert and Eraw.

The selection structure executes different code blocks based
on a condition’s truth value, with common examples being if
and switch. This structure includes multiple branch blocks,
each with a conditional judgment and an execution block.
Inter-block variable dependencies in these structures can be
categorized as follows: ① A variable xk

i ∈ Bout from the
basic block before the selection structure may have Ert and
Eraw dependencies with xk+n

i ∈ Bin from branch blocks.
Dependencies Ert and Eraw arise if xk+n

i , which is in the read
state, is in the conditional or execution block, and xk

i is in
read or write state. ② A variable xk

i ∈ Bout in a branch’s
execution block may have Ert dependencies with xk+n

i ∈ Bin
in the branch’s conditional judgment block. ③ If xk+n

i ∈ Bin
in the basic block after the selection structure is in a read state,
it may have Ert and Eraw dependencies with xk

i ∈ Bout in
multiple branch blocks.

The loop structure executes code blocks repeatedly, includ-
ing structures like while, for, and do-while. It consists of a
conditional judgment block and a loop basic block. There are
three types of inter-block dependencies within this structure:
① The variable xk

i ∈ Bout from the block preceding the
loop may have Ert and Eraw dependencies with xk+n

i ∈ Bin
in the conditional judgment block. ② During loop iterations,
xk
i ∈ Bout in the loop block may have Ert or Eraw depen-

dencies with xk+n
i ∈ Bin in the conditional judgment block.

③ The variable xk
i ∈ Bout in the loop block may have Ert

and Ewar dependencies with xk+n
i ∈ Bin in the block after

the loop, depending on whether xk
i is in the read state.

The Jump structures alter code execution order, including
statements like break and continue. These statements divide
their blocks into segments before and after the control flow
statement, creating new inter-block dependencies. For in-
stance, a continue statement, which skips to the next iteration,
introduces an Eraw or Ert dependency between xk

i ∈ Bin and
xk+n
i ∈ Bout in the block preceding the continue statement.

C. ISGraphVD Checker

1) Detection Model: By introducing a cross-graph atten-
tion matching mechanism, GMN [17] can be more sensitive
to the difference between graphs. Given a pair of graphs
G1 = (V1, E1) and G2 = (V2, E2), the objective of GMN is to

calculate the similarity s(G1, G2) between them. The model
includes three parts: Encoder, Propagator, and Aggregator.
Each graph G = (V,E) is characterized by sets of nodes V
and edges E. A feature vector xi represents each node i ∈ V ,
and a feature vector xij represents each edge (i, j) ∈ E.

The node and edge vectors are initialized independently
through distinct multilayer perceptrons (MLPs) in the en-
coding layer. GMN’s propagation layer not only aggregates
information

∑
j

mj→i between nodes in the same graph but

also utilizes cross-graph matching information µk→i between
nodes in the two graphs involved in similarity calculation to
update node features, as shown in Equation 1.

h
(t+1)
i = fnode(h

(t)
i ,

∑
j

mj→i,
∑
k′

µk′→i) (1)

mj→i = fmessage(h
(t)
i , h

(t)
j , eij), ∀(i, j) ∈ E1 ∪ E2 (2)

µk→i = fmatch(h
(t)
i , h

(t)
k ),

∀i ∈ V1, k ∈ V2 or i ∈ V2, k ∈ V1

(3)

Specifically, for ∀i ∈ V1, initially, the attention weights
ak→i between ∀k ∈ V2 and i are computed based on their
similarity, as depicted in Equation 4. This attention weights
ak→i becomes larger as the similarity between the two nodes
increases. Then, the difference between the nodes belonging
to the two graphs is calculated using Equation 6. Finally,
the cross-graph matching information

∑
k

µk→i, which is used

to update node i, is derived by aggregating the matching
information between each node in V2 and node i in V1.

ak→i =
exp(sh(h

(t)
i , h

(t)
k ))∑

k′ exp(sh(h
(t)
i , h

(t)

k′ ))
(4)

µk→i = ak→i(h
(t)
i − h

(t)
k ) (5)

∑
k

µk→i =
∑
k

ak→i(h
(t)
i − h

(t)
k )

= h
(t)
i −

∑
k

ak→ih
(t)
k

(6)

After T rounds of propagation, we obtain the node rep-
resentations for the nodes in both graphs. We then use a
function fG to derive the graph representations from these
node representations, as described in 7. The distance between
the graph representations can then be computed using a
distance function.

fG = MLPG(
∑
vi∈V

σ(MLPgate(h(T )i)⊙MLP (h(T )i))) (7)

2) Implementation: The procedures involved in training and
detection are different, and we will introduce them separately.

Training When training, the model requires paired in-
puts. For each CVE, we partition ISGraphs into two sets
based on whether they are vulnerable or patched, denoted as
ISGraphvul and ISGraphptd. For any Gi and Gj belonging



to ISGraphvul, where Gi is not equal to Gj , we pair them
to form similar (positive) pairs with a label of 1. For any Gi

in ISGraphvul and any G′
i in ISGraphptd, we pair them to

form dissimilar (negative) pairs with a label of 0. We use a
margin-based loss function defined as:

Lpair = E(G1,G2,t) [max {0, γ − t (1− d(G1, G2))}] (8)

where t ∈ −1, 1 is the pair’s label, d(G1, G2) is the Euclidean
distance between the graphs, and γ > 0 is the margin
parameter. This function encourages positive pairs to have
smaller distances (d(G1, G2) < 1 − γ) and negative pairs to
have larger distances (d(G1, G2) > 1 + γ).

Detection For each CVE, we choose a baseline vulnerable
graph Gbase and a threshold t. When a graph Gd is under
detection if the distance between Gd and Gbase is smaller than
t, we infer that Gd contains the vulnerability; otherwise, we
conclude that it does not contain the vulnerability.

We choose Gbase from the training set and then determine
the threshold t accordingly. We use “shortest average distance”
to select Gbase. We denote the vulnerable and patched graphs
in the training set as Svul and Sptd. For each vulnerable graph
Gvul ∈ Svul, the average distance between Gvul and the other
graphs in the set Svul is calculated as follows:

Davg(Gvul) =
1

|Svul|
∑

Gi∈Svul

dist(Gvul, Gi) (9)

And we can choose the Gbase following the formula:

Gbase = Gi | min(Davg(Gi)), Gi ∈ Svul (10)

For each Gvul ∈ Svul and Gptd ∈ Sptd , we calculate the
distances of each (Gvul, Gbase) pair and (Gptd, Gbase) pair
and determine t by the distribution of distances. Since most
samples are negative in the real world, having a low false-
positive rate is of great significance to the actual performance
of our method. Therefore, we choose to set the lowest possible
threshold.

IV. EXPERIMENTAL EVALUATION

We evaluate the effectiveness of ISGraphVD following six
research questions.
• RQ1: Can ISGraphVD maintain high accuracy across

different compilation settings?
• RQ2: Can ISGraph effectively improve the accuracy of

detecting tiny-patch vulnerabilities?
• RQ3: Does ISGraphVD make false alarms frequently?
• RQ4: Does the one-model-per-CVE strategy improve vul-

nerability detection accuracy?
• RQ5: Is the time cost of ISGraphVD acceptable?
• RQ6: What about the performance of ISGraphVD in the

real-world dataset?

A. Implementation

We have developed a prototype of ISGraphVD using Python
3.8.5. For binary file decompilation, we utilize IDA Pro 8.3.
Since the Joern [25] can only produce CPG for pseudo-code,
we extend it using Scala scripts to extract dependency edges

between variables from pseudo-codes and merge these edges
into CPG to form ISGraph. The model is implemented in
PyTorch (v1.11.0).

B. Experiment Setup

1) Runtime Environments: All the experiments are con-
ducted on a Rocky Linux 9.2 server with an Intel(R) Xeon(R)
Gold 6348 CPU running at 2.60GHz, 512 GB RAM, and
4 NVIDIA A100-PCIE-40GB GPU cards. The deep learning
architecture is built on the NVIDIA CUDA Toolkit 12.2.

2) Datasets: Existing binary datasets [26], [27] are typi-
cally compiled with the same options, so they can not reflect
the ability to generalize across different architectures, com-
pilers, and optimization levels. We use the dataset proposed
by Liu et al. [15] to construct Dataset I to evaluate our
method in this paper, as shown in Table I. It contains only
eight vulnerabilities from five open-source projects (dnsmasq,
curl, miniupnp, busybox, and hostapd) and include four com-
mon vulnerability types. Moreover, the vulnerabilities are
categorized into four levels based on the modification ratio:
tiny (the modified code accounts for less than 2% of the
total function code, the same below), small (2% ∼ 10%),
medium (10% ∼ 20%) and large (>= 20%). These eight
vulnerabilities encompass all modification levels. To reflect the
imbalanced distribution of real-world (Dataset I is a balanced
dataset), with the minority of samples being labeled as vulner-
able, We construct Dataset II using Dataset I for evaluating
the FPR of our method. Specifically, for each vulnerability
V in Dataset I, the vulnerable samples associated with V are
labeled as vulnerable, while all other samples in Dataset I are
considered non-vulnerable.

To further validate the effectiveness of our approach in both
typical scenarios and when dealing with tiny-patch vulnerabil-
ities, we randomly selected eight vulnerabilities, including two
tiny-patch vulnerabilities, to construct Dataset III. To improve
diversity, we additionally introduced OpenSSL as a new com-
ponent alongside the previous open-source projects. To further
evaluate the generalizability of our approach, we intentionally
used different compiler versions compared to Dataset I when
building this dataset. Fig.3 illustrates the process of building
the dataset for each CVE detection model. First, we collect
CVE details and patch information (pre- and post-patch com-
mits) from the CVE [28] and National Vulnerability Database
(NVD) [29], then download the corresponding vulnerable and
patched versions of the source code from the relevant Git
repositories. The most challenging part is compiling all the
related source code files from different open-source software
repositories. To address this, we manually set up the build en-
vironments and determine the correct compilation commands.
Next, we cross-compile these two versions of the source
code using various architectures (X86, X64, MIPS, MIPSel,
ARM, ARMhf, ARM64), compilers (GCC-11, GCC-12, GCC-
13, CLANG-10, CLANG-11, CLANG-12), and optimization
levels (O0-O3, Os, default), resulting in 2× 7× 6× 6 = 504
different binaries. Notably, although different optimization
levels typically produce different binary files, there are specific



TABLE I
VULNERABILITIES OF DATASET I, II AND III AND TRAINING RESULTS OF ISGRAPHVD

Dataset CVE ID Type Modification Level Project AUC(Training) AUC(Validation)

Dataset I &
Dataset II

2021-22901 RCE Medium (11.11%) cURL 100.00% 100.00%
2019-16275 DoS Small (2.35%) HostAP 100.00% 100.00%
2019-5482 DoS Tiny (1.18%) cURL 100.00% 100.00%

2018-20679 Info Leak Medium (12.82%) Busybox 100.00% 100.00%
2017-14491 RCE Large (22.22%) Dnsmasq 100.00% 100.00%

2017-1000494 Overflow Large (25.00%) MiniUPnP 100.00% 100.00%
2015-8899 DoS Tiny (0.64%) Dnsmasq 100.00% 100.00%
2015-6031 RCE Large (20.00%) MiniUPnP 100.00% 100.00%

Dataset III

2023-46219 Unencrypted Data Large (27%) cURL 100.00% 100.00%
2021-3448 Standard Security Check Medium (5.9%) Dnsmasq 100.00% 100.00%

2019-12110 DoS Tiny (1.96%) MiniUPnP 99.99% 99.99%
2017-14496 Integer Underflow Small (9.92%) Dnsmasq 100.00% 100.00%
2017-13704 Improper Input Validation Tiny (0.3%) Dnsmasq 100.00% 100.00%
2023-0401 NULL Pointer Dereference Large (20.4%) Openssl 99.99% 99.99%
2023-0216 NULL Pointer Dereference Large (37.5%) Openssl 100.00% 100.00%
2023-0217 NULL Pointer Dereference Large (21.4%) Openssl 100.00% 100.00%

Average 99.99% 99.99%

cases—such as simple code structures, particular compiler
behaviors, or ineffective optimizations—where the binaries
compiled under different optimization levels may be identical.
To ensure a practical and representative evaluation of the
model’s generalization on unseen binaries, we deduplicate
these binaries, ensuring that no training samples appear in the
test set.

Dataset IV consists of 121 real-world firmware samples
from eight vendors (ASUS, D-Link, NetGear, TP-Link, Net-
Core, WD, EDIMAX, and Hanfeng), from which we extracted
208 binaries. We utilize this dataset to evaluate the real-world
performance of ISGraphVD and assess the impact of supply
chain vulnerabilities.

Fig. 3. The process of building the dataset.

3) Evaluation Metrics: Since determining whether a func-
tion contains a known CVE-related vulnerability is a binary
classification task, we select the following performance met-
rics:

• Accuracy measures the ratio between the number of
samples correctly classified by the classifier and the total
number of samples: ACC = TP+TN

TP+FP+FN+TN .
• Precision refers to the case where the method accurately

identifies a vulnerable binary: P = TP
TP+FP .

• Recall is the proportion of actual vulnerable binaries
detected to all vulnerable binaries: R = TP

TP+FN .
• F1 Score represents the overall performance of the test,

calculated as the harmonic mean of precision and recall:
F1 = 2× P×R

P+R .

We use Area Under Curve (AUC) to evaluate ISGraphVD,
representing the area under the Receiver Operating Character-
istic (ROC) curve, where a higher AUC value indicates better
classifier performance.

C. Performance Evaluation

Since real-world binary compilation settings are often un-
known, we adopt XM, proposed in [30], as the evaluation task
and the benchmark for comparative experiments. XM sim-
ulates diverse compilation settings by varying architectures,
bitness, compilers, compiler versions, and optimization levels,
making it well-suited to reflect practical detection scenarios.

1) Training and Detection Performance: To evaluate IS-
GraphVD’s performance, we train the models using Dataset
I and III, with a train/validation/test split of 60%/20%/20%.
During training, we set the following parameters: Adam opti-
mizer, a node feature dimension of 56, a graph representation
dimension of 128, and a learning rate of either 0.0001 or
0.00005. The lower learning rate (0.00005) is typically used
for vulnerabilities with tiny modifications to ensure stable
convergence. We set the maximum number of training epochs
to 100, with a minimum of 10. If the model converges early,
training stops before reaching 50 epochs. The results are
presented in Table I, where we observe that all the models
trained for the selected CVEs successfully converge.

Before detection, we must select the baseline graph Gbase

and determine the threshold t as described in Section III-C2.
Fig. 4 shows that clear boundaries can be established to
determine the threshold for each type of modification level.
The red and green points represent the distances between the
positive and negative samples in the training set and Gbase.
Although some models converge within a single epoch, their
loss has not yet approached zero. Continuing the training
process enables the models to better distinguish between
vulnerable and patched samples. As shown in Table II, the
average accuracy of ISGraphVD is 99.47%, the average recall
is 98.75%, the average precision is 100.00%, and the average
F1-Score is 99.39%. Thus, we can answer RQ1, confirming



that ISGraphVD achieves high-accuracy vulnerability detec-
tion even across different compilation settings.

Fig. 4. The process of determining the thresholds for each modification level.

TABLE II
EVALUATION RESULTS USING TEST SET IN DATASET I AND III

CVE ID Accuracy Recall Precision F1-Score

2021-22901 100.00% 100.00% 100.00% 100.00%
2019-16275 100.00% 100.00% 100.00% 100.00%
2019-5482 100.00% 100.00% 100.00% 100.00%

2018-20679 100.00% 100.00% 100.00% 100.00%
2017-14491 100.00% 100.00% 100.00% 100.00%

2017-1000494 100.00% 100.00% 100.00% 100.00%
2015-8899 98.48% 97.01% 100.00% 98.48%
2015-6031 100.00% 100.00% 100.00% 100.00%

2023-46219 99.00% 98.00% 100.00% 99.00%
2021-3448 97.14% 94.12% 100.00% 96.97%

2019-12110 99.00% 98.00% 100.00% 99.00%
2017-14496 99.10% 98.25% 100.00% 99.12%
2017-13704 98.00% 96.00% 100.00% 98.00%
2023-0401 97.56% 95.12% 100.00% 97.52%
2023-0216 100.00% 100.00% 100.00% 100.00%
2023-0217 98.96% 97.92% 100.00% 98.95%

Average 99.47% 98.75% 100.00% 99.39%

To answer RQ2, we use CPG as the baseline to evaluate
whether ISGraph improves vulnerability detection accuracy,
particularly in tiny-patch vulnerabilities. As shown in Table III,
ISGraph consistently achieves higher detection performance
than CPG across all evaluated CVEs. The improvement is
especially pronounced for tiny-patch vulnerabilities—CVE-
2019-5482, CVE-2015-8899, CVE-2019-12110, and CVE-
2017-13704—where ISGraph yields an average accuracy gain
of approximately 4%. This can be attributed to the superior
graph feature representation of ISGraph, which fully cap-
tures finer-grained semantic features. As a result, ISGraphVD
proves effective in detecting tiny-patch vulnerabilities and
maintains strong performance across various modification lev-
els.

In addition, we conduct a visualization study of the model’s
attention scores. In GMN, the cross-graph attention scores
ak→i in Equation 6 measure the similarity between nodes
from different code fragments. After training, we assume that

node pairs with similar semantics and context have higher
attention values than others. In Fig. 5, we highlight the five
highest attention values ak→i from the entire attention matrix
and illustrate their corresponding positions in the pseudo-
codes. We choose CVE-2015-6031 for demonstration. The two
pseudo-codes on the figure’s left and right sides are obtained
by decompiling the binary files compiled from the vulner-
ability source code with different cross-compilation options
(mipsel-clang-7-default and x86-gcc-6-Os). The lines repre-
sent connections between node pairs exhibiting the highest
similarities between the left and right pseudo-codes. While
certain attention links may be intuitive to humans, some
connections remain difficult to interpret, such as the edge
extending from the literal node “2436” in the left code to the
literal node “0” in the right code. Furthermore, we observe that
as the modification ratio decreases, the model converges more
slowly, indicating that the modification level is the primary
factor affecting training performance.

Fig. 5. The corresponding locations in pseudo-codes for the node pairs with
the five highest attention scores in a (vul,vul) pair.

2) False Positive Evaluation: In the real world, the majority
of samples are negative, meaning they do not contain vulnera-
bilities. Incorrectly classifying non-vulnerable samples as vul-
nerable requires additional manual effort to verify these false
positives, significantly increasing the workload. Therefore, for
a method to be practically usable, it is crucial to maintain a
low FPR. However, many existing studies in this research field
focus solely on whether the model can accurately identify the
patch status, overlooking false alarms in irrelevant functions.

This section evaluates whether ISGraphVD can achieve a
low FPR while maintaining high accuracy. We utilize the
vulnerability-irrelevant samples in Dataset II to assess the FPR
of ISGraphVD. As shown in Table IV, ISGraphVD achieves
an average FPR of 0.00%, demonstrating its capability to
distinguish vulnerable functions from unrelated ones, even
when trained solely on vulnerable and patched functions.
Through this evaluation, we provide a satisfactory answer to
RQ3, confirming that ISGraphVD meets real-world demands
and is suitable for large-scale vulnerability detection.

3) Evaluation Against Shared-Model Approaches: To
answer RQ4, we compare ISGraphVD with the open-
source implementations of existing studies, including Gemini,



TABLE III
COMPARATIVE RESULTS OF CPG AND ISGRAPH ON VULNERABILITY DETECTION

CVE ID 2019-5482 2017-14491 2017-1000494 2018-20679 2015-8899 2019-16275 2021-22901 2015-6031

CPG 97.43% 98.92% 100.00% 100.00% 91.34% 100.00% 100.00% 100.00%
ISGraph 100.00% 100.00% 100.00% 100.00% 98.48% 100.00% 100.00% 100.00%

CVE ID 2023-46219 2021-3448 2019-12110 2017-14496 2017-13704 2023-0401 2023-0216 2023-0217

CPG 93.41% 93.14% 91.38% 95.40% 91.25% 91.46% 94.79% 92.71%
ISGraph 99.00% 97.14% 99.00% 99.10% 98.00% 97.56% 100.00% 98.96%

TABLE IV
FPR EVALUATION USING DATASET II

CVE ID Total Samples FP FPR

2021-22901 2,711 0 0.00%
2019-16275 2,514 0 0.00%
2019-5482 2,497 0 0.00%
2018-20679 2,518 0 0.00%
2017-14491 2,543 0 0.00%

2017-1000494 2,662 0 0.00%
2015-8899 2,427 0 0.00%
2015-6031 2,648 0 0.00%

Average 2,565 0 0.00%

VulSeeker, and FIT. All these methods are graph-based ap-
proaches designed for detecting binary code similarity at the
function level, and they typically use a single shared model to
learn features from multiple CVEs. We use Dataset I to assess
these approaches, applying the recommended best parameters
from their respective papers and ensuring sufficient training
epochs. Since the papers of these approaches lack sufficient
details on threshold determination, we can only use AUC for
comparison with ISGraphVD. Additionally, due to constraints
in the open-source implementations of Gemini and FIT, our
evaluation is limited to three architectures: ARM64, X64, and
MIPS.

The results in Table V demonstrate that ISGraphVD outper-
forms the other three methods across all vulnerabilities. For
the tiny-patch vulnerabilities CVE-2015-8899 and CVE-2019-
5482, Gemini and VulSeeker achieve an AUC of around 50%,
while FIT achieves significantly higher results, at 89.12% and
93.55%, respectively. However, these AUC values remain at
least 6% lower than those of ISGraphVD. This performance
gap persists across all modification levels, where ISGraphVD
consistently achieves the highest accuracy among the com-
pared methods. This improvement can be attributed to the one-
model-per-CVE strategy, which isolates the learning process
for each vulnerability, thereby preventing feature interference
and enabling more precise representation of vulnerability-
specific patterns.

D. Runtime Efficiency

We evaluate the efficiency of ISGraphVD by measuring
the time required for preprocessing, model training, and
detection. Preprocessing mainly involves four steps: cross-
compilation, decompilation, and graph generation. Due to the

TABLE V
COMPARATIVE EVALUATION RESULTS USING DATASET I

CVE ID Gemini VulSeeker FIT ISGraphVD

2019-5482 49.56% 51.55% 93.55% 100.00%
2017-14491 71.10% 45.50% 93.98% 100.00%

2017-1000494 72.16% 43.19% 94.14% 100.00%
2018-20679 50.11% 51.58% 93.83% 100.00%
2015-8899 50.53% 51.04% 89.12% 98.48%
2019-16275 50.12% 49.44% 95.13% 100.00%
2021-22901 53.98% 54.93% 94.27% 100.00%
2015-6031 48.09% 45.91% 90.00% 100.00%

Average 56.79% 49.60% 93.43% 99.73%

variable and challenging nature of source code collection,
cross-compilation, and decompilation, we focus our evaluation
on graph generation time (using 1 thread), model training
time (using 1 thread and 1 GPU), and vulnerability detection
time (using 1 thread and 1 GPU). Table VI presents the time
costs of our approach. Due to the multi-model architecture of
our method, the training cost is higher than that of existing
works. From the start of training until full convergence,
the training process typically takes around 100 minutes for
most CVEs. However, a notable exception is CVE-2015-8899,
which requires 100 epochs to achieve optimal performance.
By monitoring the loss at each epoch, we observed that the
model’s validation set AUC approached 99% by the 20th
epoch. Despite this, the test set accuracy remained around
95%, still exceeding PG-VulNet’s best accuracy of 91.34%.
We found that continuing training beyond this point further
improved detection accuracy and enhanced model stability.
Therefore, we prioritized accuracy over training time, consid-
ering the cost acceptable since it is a one-time process.

Detection time Our method takes approximately 1.39 sec-
onds to complete one detection, with around 1.23 seconds
for graph preparation and 0.16 seconds for detection, which
is slightly better than existing methods [16]. Additionally, a
1.39-second processing time for determining the presence of
a vulnerability in a specific binary is acceptable for practical
use. Thus, this serves as our answer to RQ5.

E. Vulnerability Detection in Real-World IoT Firmware

To answer RQ6, we evaluate ISGraphVD on the known
vulnerability detection task for IoT device firmware, using
the real-world Dataset IV. Among 208 binaries, ISGraphVD
finds 62 vulnerabilities, as shown in Table VII. We manually



TABLE VI
TIME COST OF OUR APPROACH USING DATASET I AND III

CVE ID Graph(s) Train(s) Detect(s)

2021-22901 1.26 147.08 0.19
2019-16275 1.08 8899.11 0.30
2019-5482 1.14 9916.04 0.12

2018-20679 1.00 3272.04 0.07
2017-14491 1.14 2412.06 0.19

2017-1000494 1.09 1397.79 0.19
2015-8899 1.15 37824.33 0.02
2015-6031 1.14 653.78 0.08

2023-46219 1.11 723.26 0.17
2021-3448 1.35 9359.62 0.24

2019-12110 1.09 1584.57 0.19
2017-14496 1.19 12779.85 0.14
2017-13704 1.78 14458.98 0.24
2023-0401 1.12 1473.34 0.13
2023-2016 1.13 1398.56 0.13
2023-2017 1.10 1331.23 0.12

Average 1.23 7,771.82 0.16

reviewed the binaries where vulnerabilities were detected and
made the following observations. (1) Although we only use
pre-patch commit and patch commits for training, ISGraphVD
can still accurately determine whether a version before the pre-
patch commit or after the post-patch commit contains vulnera-
bilities. However, for three vulnerabilities (CVE-2021-22901,
CVE-2019-16275, and CVE-2019-5482), the model did not
detect any vulnerable binaries. We found that this was because
there was no overlap between the affected versions of these
vulnerabilities and the versions of the open-source components
used in the firmware. For instance, the affected version range
for CVE-2021-22901 is 7.75.0 to 7.76.1. However, all versions
of libcurl.so used in the firmware dataset were earlier than
7.75.0, explaining why no vulnerable binaries were found.
For CVE-2015-8899, ISGraphVD correctly identified most of
the vulnerable binaries. However, three false positives were
observed, all belonging to the same Asus firmware series,
which reused the same version of dnsmasq, leading to identical
pseudo-code. Manual verification revealed that these samples
were similar to the false positives observed during model
testing, highlighting an area for future improvement. (2) Our
findings indicate that third-party library vulnerabilities remain
a major security concern in IoT firmware, as known vulner-
abilities in firmware images are often not patched in time.
CVE-2017-1000494 and CVE-2017-14491 affected nearly all
vendors in the dataset, with Western Digital’s personal cloud
products being the most impacted, covering four different
series. This evaluation underscores the critical importance of
detecting known vulnerabilities to enhance the security of IoT
devices.

V. LIMITATION

Although our method effectively addresses the challenges
posed by cross-architecture and tiny-patch vulnerabilities, it
still cannot handle the following scenarios:

TABLE VII
REAL WORLD DETECTION RESULTS

CVE ID Binary Total Vulnerable FP

2021-22901 libcurl.so 41 0 0
2019-16275 hostapd 18 0 0
2019-5482 libcurl.so 41 0 0

2018-20679 busybox 56 9 0
2017-14491 dnsmasq 45 17 0

2017-1000494 miniupnpd 36 29 0
2015-8899 dnsmasq 45 0 3
2015-6031 miniupnpc 12 7 0

String change ISGraphVD cannot handle situations where
vulnerabilities are fixed solely by modifying strings. For exam-
ple, CVE-2022-27780, a vulnerability in cURL, is illustrated
in Fig. 6, where the parameter of the function call ‘strcspn’
changed from “\r\n” to “\r\n\t/:#?!@”. ISGraph extracts
dependencies between variables where strings belong to the
‘LITERAL’ type. When converting ISGraph into the feature
matrix, we only consider the nodes’ type, not their values.
Therefore, changes in strings do not affect the feature matrix
of nodes.

Fig. 6. Patch of CVE-2022-27780.

Inlined function ISgraphVD determines the similarity be-
tween two functions by computing their semantic similarity.
On the one hand, function inlining can alter semantics. On the
other hand, the inline expansion may eliminate the vulnerable
functions. Therefore, our approach currently cannot handle
cases involving inlined functions.

In the future, we will test ISGraphVD on more diverse
and challenging vulnerability samples to further explore its
limitations and guide design improvements.

VI. RELATED WORK

A. Code Representation Learning

To improve code representation, researchers have evolved
from using conventional token sequences [31] to abstract
syntax trees (ASTs) [32]–[35] and ultimately to graphs [36]–
[38]. ASTs provide rich syntactic information for modeling
source code, as seen in approaches like tree-based CNNs
for code classification [34] and Tree-LSTM for code clone
detection [39] . However, while ASTs capture syntax well, they
lack semantic details like control and data flow. To address
this, some studies introduce additional edges on ASTs, use
control flow graphs (CFGs), or data flow graphs (DFGs) to
enhance semantic representation. For instance, FA-AST [40]
includes explicit control and data flow edges, and Graph-
CodeBERT [41] leverages data flow for efficient semantic
representation. DeepSim [42] and Gemini [18] use CFGs to



detect code clones, capturing semantic features and binary
code similarity, respectively.

B. Learning-based Binary Code Similarity Detection

In learning-based binary code similarity detection tech-
nology, the utilization of high-dimensional feature vectors
generated through machine learning imparts greater robustness
to code variations arising from cross-architectural differences,
leading to increased accuracy. There are many works based
on function granularity, similar to ISGraphVD. Genius [10]
applies clustering algorithms to generate high-dimensional
representations of Attributed Control Flow Graphs (ACFGs)
at the basic block level, leveraging statistical and structural
features for efficiency. Gemini [18] builds on Genius by
introducing an end-to-end graph neural network, using a
Siamese Network [43] to compute function similarity scores.
VulSeeker [7] further enhances this by incorporating seman-
tic information, constructing Labeled Semantic Flow Graphs
(LSFGs) from control and data flow graphs, and extracting
semantic features via a deep neural network. However, both
Gemini and VulSeeker rely on selecting the most similar
functions from a candidate set, yet they cannot guarantee
whether the highest-ranked function is truly similar to the
target function. The common workaround is to return the top-
K most similar functions as results. Some studies [5], [44]
highlight the dependency on expert-defined control flow graph
features, which may introduce biases. As a result, they propose
directly extracting function features from raw binary code.

VII. CONCLUSION

In this paper, we proposed ISGraphVD, a novel approach
for binary vulnerability detection that addresses challenges
in cross-compilation environments and minimal patch mod-
ifications. By adopting a one-model-per-CVE strategy, IS-
GraphVD ensures independent learning of vulnerability fea-
tures, enhancing generalization and scalability. Additionally,
we introduced Identifier Sensitive Graph (ISGraph) to capture
fine-grained variable dependencies and integrated a GMN with
a cross-graph attention mechanism to focus on vulnerability-
critical subgraphs, improving detection accuracy, particularly
for Tiny-Patch vulnerabilities. Experimental results show that
ISGraphVD outperforms state-of-the-art methods, demonstrat-
ing superior detection accuracy and robustness across compi-
lation settings. Real-world experiments validate its practical
applicability, and efficiency evaluations confirm that while
the one-model-per-CVE strategy incurs higher initial training
costs, it eliminates frequent retraining, making it a viable
long-term solution. ISGraphVD provides a scalable and ef-
fective framework for binary vulnerability detection, offering
significant advancements for securing IoT and other software
ecosystems.
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