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Abstract—The SZZ method and its variants are widely em-
ployed to identify vulnerability-affected ranges by analyzing
vulnerability-fixing commits to trace back vulnerability-inducing
commits. However, these methods generally suffer from low
precision due to several key factors: 1) Current static method-
based variants often incorrectly consider too many irrelevant
lines and files in a commit. While methods that extract file
references from vulnerability discussions can help narrow down
relevant files, obtaining bug discussions for every CVE is of-
ten difficult. 2) Learning-based approaches focus exclusively
on code to capture semantic relationships for identifying root
cause lines. However, these models utilize limited information
and demonstrate insufficient capacity for effective capture. 3)
The reliance on line mapping algorithms results in inadequate
tracing capabilities for complex vulnerabilities, especially when
vulnerability-inducing commits are obscured in earlier software
versions.

To address these issues, this paper innovatively incorporates
semantic information from descriptive text and the nature of
CVEs derived from vulnerability-fixing commit diffs. By leverag-
ing large language models (LLMs), this approach aims to capture
the true root cause lines of vulnerabilities more accurately and
enhance the tracing capabilities of the SZZ method, thereby
achieving precise localization of the vulnerability impact range.

Experimental results indicate that our proposed LLM-SZZ
method outperforms existing state-of-the-art approaches, achiev-
ing over a 18% increase in precision across datasets in various
programming languages, demonstrating a significant perfor-
mance advantage.

Index Terms—SZZ, Vulnerability, Common Vulnerabilities and
Exposures, Large Language Model

I. INTRODUCTION

The remediation for security vulnerabilities is not only time-
consuming but also costly. An example is Log4Shell (CVE-
2021-44228 [1]), a severe Remote Code Execution (RCE)
vulnerability discovered in Apache Log4j. Despite Apache’s
prompt release of patches to address this vulnerability, the
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extensive incorporation of Log4J across global software supply
chains prolongs the impact. According to the U.S. Department
of Homeland Security, identifying and remedying all affected
instances may take at least a decade [2].

While the Common Vulnerabilities and Exposures (CVE)
system provides a unified identifier to facilitate the sharing of
vulnerability information, the details included in CVE entries
often lack accuracy and completeness. Based on the research
by Bao et al., their analysis of 172 vulnerability samples
revealed that the version ranges recorded in the National
Vulnerability Database (NVD) differed from the actual ranges
for 99 of those samples [3]. Such discrepancies can lead
security teams to misallocate precious protective resources to
system versions that are not actually at risk and may result in
security experts overlooking certain vulnerabilities during the
remediation process, leaving systems vulnerable to potential
cyber-attacks.

To accurately identify the range of software versions af-
fected by bugs, the SZZ method was initially proposed in the
research [4]. Its core idea involves searching for vulnerability-
fixing commits in the historical versions of software and using
these commits to reverse-track and identify vulnerability-
inducing commits, thus determining the origin of bugs. Specif-
ically, the SZZ method leverages annotation or blame tools in
version control systems to analyze the modified lines of source
code in vulnerability-fixing commits, enabling the tracing of
the original commits that may have caused the bugs.

To enhance the accuracy of the SZZ method, various im-
proved variants have been introduced in subsequent research.
These variants can be classified into two categories: The first
focuses on filtering out noise in vulnerability-fixing commits
to accurately identify root cause lines, which includes both
static methods [5–8] and learning-based approaches [9]. For
example, a recent study [8] has demonstrated that the inclusion
of files referenced in bug discussions can enhance the effec-
tiveness of SZZ in identifying vulnerability-inducing commits
by addressing tangled commits [10]. However, this method
merely extracts files mentioned in the bug discussion, rather



than incorporating the relevant semantic information related to
the vulnerabilities. Moreover, only a small number of CVEs
have detailed bug discussions, making this approach clearly
unsuitable for widespread adoption. NEURAL-SZZ [9] utilizes
a heterogeneous graph attention network (HAN) to identify
the root cause line. While the authors successfully reduced
the false positive rate, this achievement came at the expense
of significantly decreasing the number of correctly identified
vulnerability-inducing commits, indicating that solely extract-
ing the semantic meanings of changed lines with HAN is
insufficient.

The second category aims to improve the capability to trace
the earliest commits that modified the vulnerable lines [3].
The V-SZZ [3] method introduced the concept of multiple
backtraces, using line mapping algorithms to find vulnerabil-
ities in early versions of software. However, its backtracking
capability remains inadequate, and it cannot locate the root
cause line in vulnerability-fixing commits, leading to a high
false positive rate that renders it impractical for real-world use.

To address the noise issue discussed above, this paper
proposes the LLM-SZZ method as a novel approach. Firstly,
we employ a Large Language Model (LLM) to analyze
natural language information from CVE descriptions and the
associated vulnerability-fixing commit diffs to fully compre-
hend the nature of the vulnerability and identify the root
cause deletion line. Next, LLM-SZZ integrates line mapping
with LLM analysis to facilitate multiple backtraces, thereby
identifying vulnerability-inducing commits present in earlier
versions. Finally, the method implements a final selection
process from the candidate vulnerability-inducing commits,
effectively addressing the complexities associated with tangled
commits.

The main contributions of this paper can be summarized as
follows:

• We analyzed the shortcomings of existing methods and
demonstrated that their noise filtering and backtracking
strategies are insufficient for identifying inducing com-
mits.

• We propose the first approach that leverages LLMs
with customized prompting strategies for identifying
vulnerability-inducing commits, achieving significant im-
provements in precision over prior methods.

• We designed a series of experiments demonstrating that
the incorporation of semantic information from CVE
descriptions and vulnerability-fixing commit diffs can aid
in the tracing of inducing commits.

• We compared our approach with state-of-the-art methods
using a real-world dataset that has previously been em-
ployed in SZZ methods, facilitating straightforward com-
parisons and demonstrating the effectiveness of LLM-
SZZ.

II. MOTIVATION

Utilizing static methods to identify root cause deletion
lines is often insufficient, as these methods frequently over-
look lines relevant to vulnerabilities while failing to exclude

unrelated lines. For instance, CVE-2017-1000398 [11] is a
vulnerability in Jenkins that permitted unauthorized users to
access information about running tasks on agents via the
remote API. As shown in Fig. 1, the associated vulnerability-
fixing commit involves three modified files, with the actual
vulnerability-inducing commit identified by tracing back the
deletion line 485 in Executor.java, resulting in commit bf3016.
We employed B-SZZ [4], MA-SZZ [6], and AG-SZZ [5] to
identify the vulnerability-inducing commit for this CVE. Upon
manual analysis, we found that both MA-SZZ and B-SZZ
failed to filter out any irrelevant lines. AG-SZZ recognized
the modifications in Executor.java and WorkUnit.java as non-
semantic lines. However, it ultimately overlooked the true root
cause line.

Fig. 1: Example of the Affected Range Identification Process
Using Static Methods

This example also clearly illustrates that these methods
struggle to address tangled commits (i.e., a single commit
containing multiple unrelated files). FI-SZZ [8] claims to
assist in locating vulnerability-related files by extracting files
mentioned in bug discussions. However, it is evident that this
CVE does not have a bug discussion report, which directly
prevents its application in this case.

Most existing SZZ methods lack sufficient backtracking
capability. Similar to the aforementioned approaches, they can
only perform a single backtrace, whereas V-SZZ is the first to
introduce multiple backtracking capabilities. Fig. 2 illustrates
the processes of V-SZZ in handling CVE-2016-10049 [12], a
buffer overflow vulnerability. The fixing commit utilizes the
magickmax() function to filter out inputs that could lead to a
buffer overflow.

In the case of deleted line A, the first backtrace leads
to commit 2174484, terminating further tracing due to the
line mapping algorithm. While tracking deleted line B, V-
SZZ performs five consecutive backtraces until it identifies
commit 7131d8f as a stopping point. Consequently, V-SZZ
identifies the vulnerability-inducing commits as 2174484 and
7131d8f. However, it still falls short in pinpointing the actual
vulnerability-inducing commit, 3ed852, highlighting the lim-
itations of its line mapping algorithm in addressing complex
or deeply embedded code vulnerabilities.



Fig. 2: Example of Affected Range Identification Process of
V-SZZ

Additionally, V-SZZ conducts backtracing on all deletion
lines within the vulnerability-fixing commits, designating all
identified results as vulnerability-inducing commits. Previous
evaluations stipulate that if any of the identified vulnerability-
inducing commits is indeed the actual one, the identification
is considered correct. This practice significantly overestimates
the method’s performance in real-world applications, leading
to a sharp increase in the false positive rate.

Fig. 3: Example of Root Cause Line Identification of
NEURAL-SZZ

We also examined a case study involving NEURAL-SZZ.
Fig. 3 presents a simple yet typical example from the Lucene
project, where a useless call to getAttribute() in the DefaultIn-
dexingChain causes a performance drop. In this example, it is
necessary to select one root cause line from two deletion lines.
However, NEURAL-SZZ erroneously identifies deletion line
30, which is clearly unreasonable. It fails to accurately capture
the semantic meaning of deleted statements. Considering the
advanced language comprehension capabilities of large mod-
els, we submitted this issue to ChatGPT, providing the commit
message and the fixing commit diff as input. The response
from ChatGPT is illustrated in Fig. 4.

Fig. 4: Example of Root Cause Line Identification of ChatGPT

ChatGPT demonstrates a remarkable ability to comprehend
vulnerabilities and accurately identify root cause deletion lines.
This highlights the significant potential of LLMs in analyzing
bug information and code. With its robust natural language
processing capabilities and extensive domain knowledge in
security and software, the LLM is well-equipped to achieve
a profound understanding of vulnerabilities through limited
natural language input. Additionally, the model excels at
interpreting the code-to-comment alignment (associating code
parts with their corresponding comments or descriptions),
allowing it to establish connections between natural language
and code effectively [13, 14].

We found that in this case, providing the LLM with both
commit messages and fixing-commit diff information results
in a clearer understanding of the vulnerabilities compared to
supplying only the fixing-commit diff information.

Based on these observations, this paper presents LLM-SZZ,
which explores the potential of LLMs to enhance the accuracy
of root cause line identification and improve vulnerability
tracking capabilities.

III. THE DESIGN OF LLM-SZZ

Inspired by the case described in Section II, we propose
a new method named LLM-SZZ, as illustrated in Fig. 5.
This approach initially utilizes LLM to understand CVE
descriptions and fixing commit diffs, aiming to combine more
information to capture the semantic relationship. With these
insights, LLM-SZZ identifies the root cause line within a
vulnerability-fixing commit, then traces back through each
previous commit and filters out irrelevant files from tangled
commits, thereby enabling a deeper trace back into the origins
of the vulnerability. To address the instability of LLM outputs,
we also apply a voting strategy that selects the majority
response from up to five runs.

Similar to the study of V-SZZ [3], we call the immediately
previous commits to the lines changed in the fixing commit
as the previous commits and all the commits that previously
modified the lines changed in the fixing commit as the
descendant commits.

The LLM-SZZ method is structured into three steps:



Fig. 5: The Workflow of LLM-SZZ

1) Identification of the Root Cause Deleted Lines: Utilize
LLM to analyze CVE descriptions and vulnerability-
fixing commit diffs. By aligning natural language in-
formation with code, this process facilitates a clearer
understanding of the CVE and enables the identification
of the root cause line for each file involved in the
vulnerability-fixing commit.

2) Vulnerability Backtrace Decision: First, use git blame
to identify the previous commit associated with the root
cause lines. Once the previous commits are identified, a
combination of a line mapping algorithm and analysis by
LLM determines whether to trace descendant commits.
If continuation is warranted, the root cause line in the
previous commit is selected for further traceback. This
iterative process persists until a decision to cease the
traceback is reached.

3) Optimal Candidate Selection: Utilize LLMs that
have been provided with information on CVE descrip-
tions and vulnerability-fixing commit diffs to evalu-
ate candidate-inducing commits associated with each
file, selecting the most likely commit as the true
vulnerability-inducing commit.

Fig. 6: Identification of the Root Cause Deleted Line

A. Identification of the Root Cause Deleted Line

SZZ methods presume that statements involved in a vul-
nerability are deleted while those fixing the vulnerability are
added. To trace the origins of a vulnerability and study its
evolutionary process, deleted lines serve as critical clues.
Guided by this principle, our first step in the method is to

identify root cause lines that have been removed in a commit.
A vulnerability-fixing commit may involve multiple files, each
containing several deleted lines. Simultaneously considering
all deleted lines from all files could overwhelm the input
capacity of LLM and potentially reduce accuracy. Therefore,
in this step, we independently analyze each file to extract the
respective root cause deletion lines.

Current research demonstrates that code differs fundamen-
tally from natural language [15], and the efficacy of applying
closed-source LLMs in real-world security management sce-
narios remains questionable [16]. Therefore, to fully leverage
the strengths of LLMs, we utilize natural language information
from CVE descriptions to aid LLMs in understanding the code
within vulnerability-fixing commits, thereby capturing the true
causes of vulnerabilities.

Fig. 7: Prompt for Step A

As shown in Fig. 6, three types of information form the basis
for the input to LLM. CVE description: For each CVE, this
paper retrieves the corresponding CVE description from the
NVD. This message provides cues related to the vulnerability
and is highly informative for understanding the vulnerability.
Candidate Line Numbers: LLM-SZZ considers all deleted
lines in the file and extracts the line numbers for each line,
thus restricting the focus of the LLM to a specific range. Diff
Information: Extract the hunk information for each deleted
line to form a diff collection. The information provides context
for the deleted lines while omitting irrelevant hunks, thereby



reducing the overall volume of diff information and increasing
the ratio of pertinent information.

When guiding LLM in task execution, we utilize prompt
chaining to foster deeper thinking, where a task is split
into subtasks to create a chain of prompt operations. Our
prompt chain is illustrated in Fig. 7. Through this process,
we ultimately obtain the root cause deletion line for each file.

Due to space limitations, we are unable to provide the
complete prompt here. However, it has been included in the
reproduction package1.

B. Vulnerability Backtrace Decision

During the software version update process, the root cause
line that carries the vulnerability may either remain unchanged
or go through some modifications. Consequently, past research
has explored the use of line mapping algorithm to match these
changing deleted lines. This paper utilizes the Levenshtein
distance [17] for initial selection, supplemented by the assis-
tance of an LLM for secondary refinement. The Levenshtein
distance is an edit distance that measures differences between
two strings. The calculation formula can be represented as
follows:

D[i, j] =



0 if i = j = 0

i if j = 0

j if i = 0

min


D[i − 1, j] + 1

D[i, j − 1] + 1

D[i − 1, j − 1] + cost(s1[i], s2[j])
otherwise

D[i, j] represents the minimum edit distance required to
convert the first i characters of the first string into the first
j characters of the second string, and cost(s1[i], s2[j]) repre-
sents the cost of replacing character s1[i] with s2[j], typically
0 or 1.

Fig. 8: Prompt for Step B

After identifying the root cause line A in step 1, the process
continues to trace back more deeply from this starting point.
The procedure begins with executing git blame to identify
the previous commit. If this commit does not include any
deleted lines, the traceback is terminated; otherwise, we further
calculate the Levenshtein distance between each deleted line in
the commit and line A. If the Levenshtein distance is less than
0.5, it indicates a significant difference from the root cause

1https://github.com/juzizi44/LLM SZZ

line, suggesting a lower likelihood of containing the bug, thus
making it unsuitable for further traceback. We will discuss the
determination of the Levenshtein distance later. This distance
helps to exclude a portion of deleted lines likely unrelated to
the bug. The remaining lines are considered valid candidates
and submitted to the LLM. Unlike the previous use of LLM,
this step grants the model the authority to autonomously stop
the traceback. If the LLM determines that all candidate lines
are unrelated to the bug based on the CVE description, the
diff information of the vulnerability-fixing commit, the diff
information of candidate lines, and the candidate line numbers,
it will stop the traceback. Otherwise, it identifies the root cause
line in that commit, which is the line most likely related to the
vulnerability. In each iteration, LLM-SZZ selects at most one
deleted line per file as the next root cause line for traceback.
Once the traceback is stopped, LLM-SZZ identifies the earliest
commit related to the bug as the vulnerability-inducing commit
for that file.

In this task, the prompt we used is shown in Fig. 8. The
output format of the LLM is similar to that of the prompt in
Fig. 7.

C. Optimal Candidate Selection
A tangled commit refers to a commit that involves modifi-

cations across multiple files; consequently, it is necessary to
exclude any files that are not relevant to the vulnerability.

Through the steps outlined above, each file modified in the
vulnerability-fixing commit is associated with corresponding
vulnerability-inducing commits. The final step is to use an
LLM to identify the commit most closely related to the
vulnerability, based on the CVE description and diff of the
fixing commit.

For instance, consider CVE-2016-10049, as depicted in
Fig. 1. The LLM-SZZ method tracks 6 deleted lines, identi-
fying three possible vulnerability-inducing commits: bf3c016,
92a2c48 and fcb94af. Subsequently, the method filters out the
irrelevant commit 92a2c48 and fcb94af, confirming bf3c016
as the actual vulnerability-inducing commit.

In this task, we used the prompt shown in Fig. 9.

Fig. 9: Prompt for Step C

IV. EVALUATION

We assess the effectiveness of our proposed method by
addressing the following five research questions:



• RQ1: Which LLM is the best for LLM-SZZ?
• RQ2: How does the Levenshtein distance affect the

experimental results?
• RQ3: How do the CVE description and the fixing-commit

diff affect the experimental results?
• RQ4: How does LLM-SZZ perform in comparison to

previous SZZ methods?
• RQ5: What is the performance of LLM-SZZ on deep

vulnerabilities?

A. Datasets

The dataset used in this study comes from 172 manually
verified vulnerabilities by Bao et al. [3], including 100 C/C++
and 72 Java cases. We performed manual validation through
a three-person review process, resolving discrepancies via
discussion. During this process, we found the Java project
blynk-server was removed, two vulnerabilities lacked valid
inducing commits. We corrected these issues in the dataset2.
Consequently, the Java vulnerability count was adjusted to 69.

Detailed information on the dataset is presented in Table I.

TABLE I: Details of Datasets

Dataset Vulnerability Vulnerability-fixing Commit
Shallow Deep

C/C++ Dataset 60 40 100
Java Dataset 25 44 82

In the dataset, ‘Shallow’ vulnerabilities refer to those for
which the vulnerability-inducing commit can be identified with
a single use of the blame command on the vulnerability-fixing
commit. In contrast, ‘Deep’ vulnerabilities require multiple
iterations of blame to trace back to the original vulnerability-
inducing commit. ‘Vulnerability-fixing Commit’ denotes the
number of commits that address these vulnerabilities. In Java
datasets, a single vulnerability may be rectified through multi-
ple fix commits, often resulting in the number of fix commits
surpassing the number of identified vulnerabilities. Therefore,
there are 82 fixing commits rather than 69 in Java datasets.

B. Baseline Methods

To assess the effectiveness of our method, we replicated the
following five baseline methods for comparison:

B-SZZ [4] An original SZZ method that searches for
vulnerability-fixing commits in the software’s version history
and traces back through these commits to identify the changes
that introduced the bugs, thereby determining the origin of the
vulnerabilities. Since the B-SZZ method used in this study is
based on the git blame command, it implicitly utilizes the
annotation graphs.

AG-SZZ [5] An enhanced SZZ method that utilizes the
structure of annotation graphs to ignore non-semantic lines
and formatting changes (such as indentation and bracket
positioning).

2https://github.com/juzizi44/LLM SZZ

MA-SZZ [6] An advanced version of AG-SZZ, this method
excludes commits that do not involve source code changes,
including branch changes, merges, and attribute modifications.

V-SZZ [3] A state-of-the-art SZZ method. By integrat-
ing line-mapping techniques, it enables multiple backward
traceabilities, effectively tracing vulnerabilities back to earlier
versions.

NEURAL-SZZ [9] The first method applies a heteroge-
neous graph attention neural network to locate the root cause
line. To extract the vulnerability-inducing commits, NEURAL-
SZZ needs to be used in combination with V-SZZ.

The implementations for B-SZZ, MA-SZZ, and RA-SZZ are
derived from the replication package provided by [18], while
V-SZZ is based on research by [3]. The open-source code for
NEURAL-SZZ originates from [9]. We provide a package to
reproduce our experiments, which is available at the following
address: https://github.com/juzizi44/LLM SZZ.

C. Evaluation Metrics

Consistent with previous studies [3, 19], we employed two
widely recognized metrics, Recall and Precision, to evaluate
the SZZ methods. They are calculated as follows:

R =
|correctc ∩ identifiedc|

|correctc|

P =
|correctc ∩ identifiedc|

|identifiedc|

|correctc| represents the total number of true vulnerability-
inducing commits in the dataset, while |identifiedc| denotes
the number of commits identified by the SZZ method as
vulnerability-inducing commits.

In this study, we also calculated the F1-score:

F1 = 2× P ×R

P +R

It is noteworthy that upon careful verification, we dis-
covered that V-SZZ [3] had implemented deduplication for
|correctc| and |identifiedc|. However, we found that in the
dataset, different vulnerabilities sometimes share the same
vulnerability-inducing commit; for example, the vulnerability-
inducing commits of CVE-2009-1379, CVE-2009-1378, and
CVE-2014-0221 are identical. Thus, deduplication could lead
to inaccuracies in the results. Our evaluation took this into
account and avoided this error.

D. Comparison of Using Different LLMs (RQ1)

To answer RQ1, we evaluated the performance of several
different LLMs on the LLM-SZZ method. Specifically, we se-
lected a range of representative open-source models, including
DeepSeek-V2.5 [20] and Mixtral-8x7B-Instruct-v0.1 [21]. We
also incorporated several closed-source models from OpenAI,
such as GPT-4o mini [22], GPT-4o [23], GPT-3.5 Turbo [24],
and OpenAI o1-mini [25]. For each model, we utilized the
default parameters. The comparative results for these models
are shown in Table II. In C/C++ datasets, GPT-3.5 Turbo



TABLE II: Results of LLM-SZZ using different LLMs

Dataset LLM Recall Precision F1-score

C/C++ GPT-4o mini 0.800 0.808 0.804
GPT-4o 0.820 0.828 0.824

GPT-3.5 Turbo 0.830 0.838 0.834
DeepSeek-V2.5 0.810 0.818 0.814

Mixtral-8x7B-Instruct-v0.1 0.800 0.808 0.804
OpenAI o1-mini 0.820 0.828 0.824

Java GPT-4o mini 0.750 0.718 0.734
GPT-4o 0.765 0.732 0.748

GPT-3.5 Turbo 0.779 0.768 0.774
DeepSeek-V2.5 0.765 0.732 0.748

Mixtral-8x7B-Instruct-v0.1 0.706 0.640 0.671
OpenAI o1-mini 0.735 0.704 0.719

demonstrated superior performance, achieving a recall of
0.830, a precision of 0.838, and an F1 score of 0.834. In
Java datasets, although the overall performance of GPT-3.5
Turbo was lower than in C/C++ datasets, it still performed the
best among all models, with recall, precision, and F1 scores
of 0.779, 0.768, and 0.774, respectively. This suggests that
the GPT-3.5 Turbo version of the LLM-SZZ method is
most effective across different programming languages.
Therefore, the above experiment demonstrates the effective-
ness of GPT-3.5 Turbo in this task. Taking cost considerations
into account, DeepSeek-V2.5 has only a slight loss in perfor-
mance compared to GPT-3.5 Turbo. However, with negligible
expenses associated with this open-source model, DeepSeek-
V2.5 demonstrates strong practical utility.

TABLE III: Stability Analysis of LLM-SZZ Using Different
LLMs

Dataset LLM stable results unstable results

C/C++ GPT-4o mini 0.905 0.041
GPT-4o 0.845 0.042

GPT-3.5 Turbo 0.859 0.081
DeepSeek-V2.5 0.960 0.000

Mixtral-8x7B-Instruct-v0.1 0.639 0.236
OpenAI o1-mini 0.895 0

Java GPT-4o mini 0.845 0.034
GPT-4o 0.885 0.008

GPT-3.5 Turbo 0.873 0.008
DeepSeek-V2.5 1.000 0.000

Mixtral-8x7B-Instruct-v0.1 0.686 0.212
OpenAI o1-mini 0.869 0.025

To investigate the randomness of LLMs, we conducted a
statistical analysis of the results obtained through the Voting
Strategy. In each step of the individual requests, we considered
the results stable if the outputs of the first three repeated
runs of the model were identical, or if three out of the four
outputs in the first four runs were the same. Conversely,
we classified the results as unstable if, after five runs, the
model produced identical outputs two times or fewer. The
statistics for each model are presented in Table III. DeepSeek-
V2.5 exhibited the highest stability, nearly reaching a value
of 1. With the exception of Mixtral-8x7B-Instruct-v0.1, the
majority of models demonstrated stability levels exceeding
84.5%, while completely random results were below 8.1%.

E. The impact of Levenshtein distance(RQ2)

(a) Performance comparison in
C/C++ dataset

(b) Performance comparison in
Java dataset

Fig. 10: Performance comparison of different Levenshtein
distances

Levenshtein distance can assist in filtering out lines that are
not related to vulnerabilities before further analysis with an
LLM. If the threshold is set too low, it may allow too much
irrelevant information, which could interfere with the LLM’s
judgment. Conversely, if the threshold is set too high, it might
inadvertently exclude lines that do contain vulnerabilities. To
determine the appropriate Levenshtein distance, we conducted
experiments incrementally increasing the distance from 0 by
0.1. We used GPT-3.5 Turbo as the LLM. The results of
these experiments are shown in Fig. 10b and Fig. 10a. The
experiments indicated that the optimal performance was
achieved when the Levenshtein distance was set to 0.5.

F. The impact of CVE description and fixing-commit diff
(RQ3)

To illustrate the significance of CVE descriptions and fixing-
commit diffs in enabling LLMs to understand vulnerabilities
during the Vulnerability Backtrace Decision process, we con-
ducted ablation experiments for each component, as presented
in Tables IV and V. The data shows that removing either
the CVE description or the fixing-commit diff leads to a
decline in performance, with the fixing-commit diff having
a greater effect. This is because most CVE descriptions
provide only a high-level overview of the vulnerability, often
limited to function names, while fixing-commit diffs clearly
outline specific code changes. As a result, code prompts allow
LLMs to better grasp the intricate details of vulnerabilities,
facilitating the backtracking process. However, when both
components are provided, LLMs achieve a comprehensive un-
derstanding of vulnerabilities by integrating broader and more
detailed insights, thereby resulting in enhanced performance.

G. Performance Comparison with Existing SZZs (RQ4)

To answer RQ4, we compared the performance of LLM-
SZZ, which employs GPT-3.5 Turbo, against baseline methods
in both C/C++ and Java datasets. The comparison results are



TABLE IV: Ablation Study on CVE Descriptions

Model Dataset Recall Precision F1-score

GPT-4o mini
Java 0.706 0.686 0.696

C 0.780 0.788 0.784
Average 0.743 0.737 0.740

GPT-4o
Java 0.735 0.714 0.725

C 0.800 0.808 0.804
Average 0.767 0.761 0.765

GPT-3.5 Turbo
Java 0.750 0.739 0.745

C 0.800 0.808 0.804
Average 0.775 0.774 0.775

DeepSeek-V2.5
Java 0.750 0.718 0.734

C 0.800 0.808 0.804
Average 0.775 0.763 0.769

Mixtral-8x7B-Instruct-v0.1
Java 0.632 0.589 0.610

C 0.740 0.747 0.744
Average 0.686 0.618 0.627

OpenAI o1-mini
Java 0.691 0.671 0.681

C 0.780 0.788 0.784
Average 0.735 0.730 0.733

TABLE V: Ablation Study on Fixing-Commit Diffs

Model Language Recall Precision F1-score

GPT-4o mini
Java 0.706 0.649 0.676

C 0.740 0.747 0.744
Average 0.723 0.698 0.710

GPT-4o
Java 0.721 0.690 0.705

C 0.780 0.788 0.784
Average 0.750 0.739 0.745

GPT-3.5 Turbo
Java 0.721 0.690 0.705

C 0.790 0.798 0.794
Average 0.756 0.744 0.750

DeepSeek-V2.5
Java 0.735 0.704 0.719

C 0.780 0.788 0.784
Average 0.757 0.746 0.752

Mixtral-8x7B-Instruct-v0.1
Java 0.706 0.600 0.649

C 0.730 0.737 0.734
Average 0.718 0.618 0.642

OpenAI o1-mini
Java 0.735 0.704 0.719

C 0.760 0.768 0.764
Average 0.748 0.736 0.742

presented in Table VI. Despite our best efforts to reproduce
V-SZZ using the original dataset and code, the results still did
not meet the performance claimed by the authors. Therefore,
we use the results of our implementation.

First, we analyze the comparative experimental results
within the C/C++ datasets. In terms of precision, LLM-SZZ
performed the best, achieving a precision of 0.838, which
is 18.8% higher than the best-performing baseline (V-SZZ
at 0.650). For recall, LLM-SZZ led with a score of 0.830,
surpassing V-SZZ by 3%. Regarding the F1-score, LLM-SZZ
stood out with a score of 0.834, significantly exceeding V-SZZ
(0.717) by approximately 11.7%.

In the evaluation experiments for the Java datasets, LLM-
SZZ demonstrates a precision of 0.768, surpassing that of
V-SZZ (0.504) by approximately 26.4% and NEURAL-SZZ
(0.690) by 7.8%. Furthermore, the F1-score achieved by LLM-
SZZ is 0.774, reflecting an improvement of about 14.4% over
V-SZZ (0.630) and 8.8% over NEURAL-SZZ (0.686). The
recall of LLM-SZZ (0.779) on the Java dataset exceeds that
of NEURAL-SZZ(0.682) by 9.7%, but exhibits a decline of
6.2% relative to V-SZZ (0.841).

TABLE VI: Performance Comparison of Different SZZ Meth-
ods

Method Dataset Recall Precision F1-score

B-SZZ
C/C++ 0.630 0.578 0.603

Java 0.681 0.362 0.472
Average 0.656 0.470 0.538

MA-SZZ
C/C++ 0.660 0.520 0.581

Java 0.783 0.432 0.557
Average 0.722 0.476 0.569

AG-SZZ
C/C++ 0.680 0.548 0.607

Java 0.739 0.531 0.618
Average 0.710 0.540 0.613

V-SZZ
C/C++ 0.800 0.650 0.717

Java 0.841 0.504 0.630
Average 0.821 0.577 0.674

NEURAL-SZZ Java 0.682 0.690 0.686

LLM-SZZ
C/C++ 0.830 0.838 0.834

Java 0.779 0.768 0.774
Average 0.804 0.803 0.806

TABLE VII: Total Number of Vulnerability-inducing Commits
Identified by SZZs

Method Dataset |identifiedc| False Positive

B-SZZ
C/C++ 109 0.422

Java 130 0.638
Average 118.5 0.530

MA-SZZ
C/C++ 127 0.480

Java 125 0.568
Average 126 0.524

AG-SZZ
C/C++ 124 0.452

Java 96 0.469
Average 110 0.460

V-SZZ
C/C++ 123 0.350

Java 115 0.496
Average 119 0.423

NEURAL-SZZ Java 81 0.310

LLM-SZZ
C/C++ 99 0.162

Java 71 0.232
Average 85 0.197

A vulnerability-fixing commit may involve modifications
across multiple files, each containing numerous deleted lines;
however, not all changes are directly related to the bug.
Whether employing static methods or learning-based ap-
proaches, these techniques demonstrate a limited capacity
for effectively filtering out noise. Consequently, even when
they successfully identify vulnerability-inducing commits, the
high false positive rates undermine the applicability of these
methods in real-world scenarios.

Unlike these methods, LLM-SZZ was specifically designed
to eliminate irrelevant candidate vulnerability-inducing com-
mits from the outset. We analyzed the total number of
vulnerability-inducing commits identified by various SZZ
methods in C/C++ and Java datasets as detailed in Table VII.
It is evident that the LLM-SZZ method identifies the fewest
vulnerability-inducing commits across both programming lan-
guages, thus achieving the lowest false positive rate. In C/C++



datasets, LLM-SZZ identified only 99 commits, which is at
least 10 fewer than other methods, with a false positive rate
of only 0.162. Similarly, in Java datasets, LLM-SZZ reduced
the count by more than 10 compared to its counterparts,
with a false positive rate of 0.232. As the complexity of
vulnerabilities increases and the number of modified files in
vulnerability-fixing commits grows, the effectiveness of LLM-
SZZ algorithm in reducing false positive rates becomes more
significant.

Thus, we can conclude that LLM-SZZ exhibits the best
overall performance on this dataset.

H. Deep Vulnerability Detection Analysis (RQ5)

To answer RQ5, we conducted a comparative analysis
between the LLM-SZZ and V-SZZ methods to assess their
recall in identifying deep and shallow software vulnerabilities.
Due to the fact that methods like B-SZZ, MA-SZZ, and AG-
SZZ only blame once to find the previous commit, they fail
to identify deep vulnerabilities. Therefore, we do not discuss
them in this part. We compiled comprehensive statistics from
the experimental results, as summarized in Table VIII.

Unlike common programming errors, vulnerabilities typi-
cally originate in earlier software versions and undergo var-
ious degrees of code modifications during software updates.
The line mapping algorithms approach in V-SZZ employs
Levenshtein distance or Abstract Syntax Tree (AST) mapping
algorithm. However, Levenshtein distance merely evaluates the
similarity between lines, thus lacking depth. Additionally, AST
mapping algorithm only considers the syntactic structure of the
code, ignoring semantic details.

TABLE VIII: Comparison of Recall in Identifying Deep and
Shallow Vulnerabilities Between LLM-SZZ and V-SZZ

Method Language Deep Vulnerabilities Shallow Vulnerabilities

V-SZZ C/C++ 0.675 0.867
Java 0.773 0.880

LLM-SZZ C/C++ 0.900 0.767
Java 0.787 0.764

LLM-SZZ enhances the analysis by utilizing CVE descrip-
tion and natural language processing to aid in understanding
the semantic aspects of vulnerabilities. This method not only
assesses the similarity of deleted lines between consecutive
commits but also leverages additional natural language in-
formation to grasp the underlying reasons for vulnerabili-
ties. Consequently, it performs more adeptly in tracing
deep vulnerabilities by using both line similarity and
natural language insights for decision-making. However,
LLM-SZZ does not outperform V-SZZ in detecting shallow
vulnerabilities, as it may over-trace back to commits before
the introduction of the vulnerabilities.

I. Limitations

We conducted an analysis of the error causes for each
vulnerability-fixing commit by the LLM-SZZ and V-SZZ,

categorizing the errors into three types: 1) Insufficient back-
tracking, where the actual vulnerability-introducing commit
occurred earlier than the commit identified by SZZ; 2) Ex-
cessive backtracking, where the actual vulnerability-inducing
commit is more recent than the commit identified by SZZ; 3)
Misidentification, where no vulnerability-introducing commits
were identified during the backtracking process, or an incorrect
backtracking path was chosen.

TABLE IX: Analysis of Error Causes in LLM-SZZ and V-SZZ
Methods

Method Error Types

Insufficient
Backtracking

Excessive
Backtracking Misidentification

V-SZZ 17 10 4
LLM-SZZ 8 14 10

As indicated in Table IX, we observed that V-SZZ primarily
suffers from insufficient backtracking, whereas LLM-SZZ is
more prone to excessive backtracking. This pattern suggests
that LLM-SZZ tends to backtrack more deeply, erroneously
identifying non-buggy lines as buggy. This issue arises because
the model may consider a line to have evolved from a line
in an earlier commit during backtracking, despite the line
in that earlier commit being bug-free, thus prompting further
unnecessary backtracking.

J. Case Study: Why GPT-4o Fails

Since GPT-3.5 Turbo outperformed GPT-4o, which is coun-
terintuitive, we specifically selected a vulnerability case for
analysis. Using CVE-2016-2182 [26] in the OpenSSL project
as an example, GPT-3.5 Turbo successfully identified the
vulnerability, whereas GPT-4o failed to analyze it correctly.
The model outputs are presented in Table X.

We found that both models effectively understood the
vulnerability and demonstrated that GPT-4o provides a more
comprehensive and detailed analysis of the code. However,
discrepancies arose during the second step of analyzing each
candidate line. GPT-3.5 Turbo considered the change in the
line involving memory allocation for the ‘bn data’ array
within the ‘BN bn2dec()’ function, thus linking this line to the
vulnerability; while GPT-4o determined that the change in line
118 merely involved removing typecasting from the allocation
of memory to ‘bn data’ and ‘buf’. This modification does not
directly relate to checking the return values of mathematical
operations or managing buffer boundaries, which were the
core issues in Bug A. Both GPT-4o and GPT-3.5 Turbo show
strong reasoning, but GPT-4o’s stricter logic may miss weak
or implicit signals, leading to lower task performance. GPT-
3.5 Turbo, being more lenient, better identifies “potentially
relevant” cues. This is a task-specific limitation of GPT-4o,
not a general flaw.

V. THREATS TO VALIDITY

Construct Validity. An issue related to construct validity
arises from our use of the dataset provided by Baolingfeng



TABLE X: Comparison of GPT-3.5 Turbo and GPT-4o in Analyzing CVE-2016-2182

Output GPT-3.5 Turbo (True) GPT-4o (False)
Description of Vulnera-
bility

Bug A in the CVE description involves a vulnerability
in the ‘BN bn2dec()‘ function of OpenSSL. When an
oversized BIGNUM is passed, it can trigger a failure in
‘BN div word()‘, leading to out-of-bounds writes to the
‘bn data‘ buffer, potentially causing a crash. The fix checks
the return value of ‘BN div word()‘ to prevent overflow.

The issue arises when handling large BIGNUMs in ‘BN bn2dec()‘, which con-
verts BIGNUMs to decimal strings. If an extremely large BIGNUM is passed,
division using ‘BN div word(t, BN DEC CONV)‘ might fail (returning -1).
This failure wasn’t checked in earlier versions, causing out-of-bounds writes as
the pointer ‘lp‘ would increment regardless of success. The fix ensures pointer
‘lp‘ increments don’t exceed the allocated size of ‘bn data‘.

Analysis of Each Candi-
date Line

Line 118: Highly Probable - The change in this line in-
volves memory allocation for the ‘bn data’ array within
the ‘BN bn2dec()’ function, addressing the potential buffer
overflow issue discussed in the bug description.

Line 118: Impossible - The change in line 118 deals only with removing
typecasting from the allocation of memory to ‘bn data’ and ‘buf’. This
modification does not directly relate to checking the return values of
mathematical operations or managing buffer boundaries, which were the
core issues in Bug A. Hence, there is no likelihood that Bug A resided in this
particular line in its previous version.

Result 118 -1

et al. This dataset serves as a foundational element for our
analysis, and its correctness is critical for drawing accurate
conclusions. To ensure the accuracy of the true inducing com-
mits, we undertook a meticulous process of manual verification
for all vulnerabilities. Specifically, we employed a three-
person review mechanism, where each case was independently
examined and any disagreements were resolved through group
discussion. The finalized, corrected dataset has been made
publicly available in our replication repository for transparency
and reproducibility.

Internal Validity. One assumption of our method is that
statements directly related to vulnerabilities are deleted while
those addressing them are added. However, this assumption
may not hold true in certain situations, such as cases where
there are no deleted lines. Nonetheless, all SZZ algorithms are
based on this assumption, and our research aims to enhance
the precision of SZZ methods. Additionally, an important
consideration for internal validity is the inherent randomness
of large language models (LLMs). To evaluate the impact
of this randomness on our task, we analyzed the proportion
of unstable results and found that, for certain models, this
randomness rendered the results unreliable. Therefore, it is
advisable to avoid using LLMs with excessive randomness
for this task.

External Validity A potential threat to the external validity
of our study is the total number of vulnerabilities, which
stands at 172. This figure includes both deep and shallow
vulnerabilities and is comparable to the number of bugs
analyzed in previous studies [3, 6, 27, 28]. This suggests that
the scale of our dataset is consistent with established research
in the field.

VI. RELATED WORK

In this chapter, we present LLMs and their applications in
the field of security; then we review various variants of the
SZZ method.

A. Large Language Model

LLM consists of billions of parameters, primarily based
on the Transformer architecture [29], which includes multi-
ple self-attention layers. The model is capable of focusing
on different parts of the input data and deeply learning
the semantics and grammatical structures of the language.
Currently, various LLMs have emerged [30, 31]. Developed

from DeepSeek LLM [32], DeepSeek-V2 [33] introduced the
Multi-head Latent Attention (MLA) structure and utilized the
proprietary DeepSeekMoE technology to further reduce com-
putational load, significantly enhancing inference efficiency.
Recently, DeepSeek-V2.5 has emerged as an integration of
DeepSeek-V2-Chat and DeepSeek-Coder-V2-Instruct, thereby
consolidating the general and coding capabilities of its prede-
cessors [20]. Besides, Albert Q. Jiang et al. introduced Mixtral
8x7B [21], a Sparse Mixture of Experts (SMoE) language
model. StarCoder2 [34] relies on the digital commons provided
by the Software Heritage (SWH) source code archive for
its foundation. The development of GPT-3.5 [24] mainly
followed the training methods of InstructGPT, with targeted
optimizations for conversational capabilities. GPT-4 [35], for
the first time, expanded the input modalities of the GPT series
models from single-text to both text and image. Furthermore,
OpenAI o1 [36] employs a chain of thought processes to
enhance its reasoning capabilities through reinforcement learn-
ing, enabling it to recognize and rectify mistakes, simplify
complex steps, and adapt its strategies when confronted with
challenges.

LLMs are also widely applied in the field of security. In
static analysis, Li Haonan et al. [37] explores the potential
roles of LLMs in this area by posing relevant questions and
assessing the practicality of employing LLMs for program
analysis. Llm4sa [38] can remove a great deal of false warn-
ings and facilitate bug discovery significantly. Additionally,
The team led by Li introduced LLift [39], an innovative
framework that merges static analysis with LLMs, focusing
on the detection of use-before-initialization (UBI) bugs in
the Linux kernel. LLMs have also demonstrated excellent
performance in fuzz testing within the dynamic analysis field.
Fuzz4all [40] leverages LLMs as an input generation and
mutation engine, which enables the approach to produce di-
verse and realistic inputs for any practically relevant language.
BusyBox [41] employs LLMs to generate target-specific initial
seeds. Moreover, Huang Linghan et al. [42] have developed
LATTE, which is the first static binary taint analysis supported
by an LLM.

B. SZZ Methods

Several SZZ methods have been proposed to identify
vulnerability-inducing commits. The B-SZZ method [4] was
originally proposed by Śliwerski in 2005. It straightforwardly



blames vulnerability-fixing commits, determines the earlier
change at the location of the fix, and then considers all
the resulting candidates as vulnerability-inducing commits.
Although effective for straightforward bugs, it performs poorly
for complex bug situations.

AG-SZZ [5] aims to improve upon the original B-SZZ by
excluding non-semantic lines and changes in code formatting,
such as indentation and bracket adjustments, which often
led to processing a vast amount of irrelevant modifications.
By incorporating an annotation graph structure, AG-SZZ ef-
fectively filters out whitespace and comments, significantly
reducing false positives. MA-SZZ [6] was designed by Da
Costa et al. It focuses on excluding meta-changes, which are
those commits that do not involve source code modifications,
such as branch changes and file attribute modifications, from
being considered as potential vulnerability-fixing commits.
Unlike AG-SZZ, which mistakenly marks these meta-changes
as vulnerability-inducing commit candidates when using the
annotation graph, MA-SZZ narrows down the candidates by
ruling out all commits without source code changes.

Furthermore, V-SZZ [3] emphasizes the identification of
vulnerabilities that may have been introduced in earlier ver-
sions of software. Traditional SZZ methods typically focus
only on the most recent modifications and are ineffective
in tracing back to vulnerabilities that may exist in earlier
versions. V-SZZ leverages line mapping techniques for multi-
ple reverse tracing iterations. For Java datasets, it employs
an AST mapping algorithm [43]; for C/C++ datasets, it
utilizes Levenshtein distance [17] to map similar lines. This
method significantly enhances the understanding of the origins
of vulnerabilities, especially those introduced early on and
persisting over time. Besides, to identify the root cause line
of vulnerability-fixing commits, NEURAL-SZZ [9] employs a
Heterogeneous Graph Attention Network (HAN) to capture the
semantic relationships between lines. Tang et al. propose using
NEURAL-SZZ initially, followed by the application of V-
SZZ for tracing back, which significantly improves precision.
However, this approach is limited to the Java programming
language and has a high false positive rate.

VII. CONCLUSION AND FUTURE WORK

The existing SZZ method is plagued by a high rate of false
positives. To address this issue, we propose the high-precision
LLM-SZZ method.

Our approach innovatively utilizes Large Language Models
(LLMs) to improve the accuracy of identifying vulnerability-
inducing commits while substantially reducing false positives.
To address the challenges associated with inaccurately iden-
tifying root cause lines in iterative commits, we employed
an LLM that incorporates natural language information from
CVE descriptions alongside vulnerability-fixing commit diffs
to better understand code semantics. To tackle the insufficient
backtracking capability in line matching, we integrated a line
mapping algorithm with LLM analysis and designed a prompt
chain for the LLM. For evaluation, we utilized a real-world
dataset that is widely used in assessing SZZ methods.

Experimental results demonstrate that the LLM-SZZ
method, leveraging the GPT-3.5 Turbo model, achieved pre-
cision improvements of 18.8% and 26.4% and F1 score en-
hancements of 11.7% and 14.4% in vulnerability tracing tasks
for C/C++ and Java datasets, respectively, compared to the
current state-of-the-art method. These significant advantages
not only confirm the enhanced effectiveness of LLM-SZZ over
traditional SZZ approaches but also highlight its efficiency and
reliability in handling complex vulnerability scenarios.

In the future, we plan to create a dataset encompassing
a wider range of programming languages to evaluate the
effectiveness of LLM-SZZ on additional data. Additionally,
we intend to explore its potential application in common bugs
beyond vulnerabilities, thereby expanding the scope of utility
for LLM-SZZ.
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