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Abstract

The application of deep learning in voice cloning has significantly
enhanced the quality of cloned voices. While advanced voice cloning
technologies are widely applied across various domains, they also
pose serious security challenges such as producing natural Deep-
fakes. In response, numerous studies have focused on detecting
fake voices, with many reporting outstanding performance. How-
ever, is the issue truly resolved? This paper introduces Adversarial
Neural Mimicry Attack (ANMA) which leverages a specialized
model to predict the behavior of other similar models, transforming
black-box attacks into white-box scenarios indirectly. Based on
ANMA and Speaker-irrelative Features (SiFs), we propose a novel
black-box attack framework called SiFMimicEvader, designed to
evade fake voice detectors with high success rates and minimal
query requirements. The framework utilizes speech representa-
tion models as the breakthrough to predict the behaviors of fake
voice detectors and employs a series of SiFs editing operations
as perturbations to deceive these detectors. Experimental results
demonstrate the effectiveness of SiFMimicEvader, achieving an av-
erage attack success rate exceeding 50% across various detectors,
significantly outperforming other attack methods, while also show-
ing great performance in audio quality and query scale, indicating
its high availability in real-world scenarios.

CCS Concepts

« Information systems — Multimedia information systems; «
Security and privacy — Social network security and privacy.
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1 Introduction

Voice has long been a fundamental medium for information ex-
change in human society, serving critical functions in digital sys-
tems, including real-time communication, identity authentication,
etc [7, 39, 47]. The development of high-quality voice cloning tech-
nology has enabled its broad use across various fields. However,
the rapid spread of voice cloning technology also introduces sub-
stantial security challenges, particularly by harming content in-
tegrity and trust-building processes. With the in-depth applica-
tion of deep learning technology, voice cloning has greatly im-
proved in both quality and naturalness. These advanced systems
[32, 33, 37, 40, 41, 44] can clone vocal timbre, intonation, and
prosody with remarkable precision, making it increasingly difficult
for listeners to distinguish between human and cloned fake voices.
Numerous real-world cases [19, 31] have shown that advanced
voice cloning has been widely used to commit fraud, bypass voice
authentication systems, and spread political disinformation.

To address these risks, relevant researchers have conducted a
large number of studies on fake voice detection technology in re-
cent years. Fake voice detection is a binary classification task aimed
at determining whether audio is Al-generated or genuine. Early
studies primarily focus on traditional speech features, such as Mel-
Frequency Cepstral Coefficients (MFCC), to identify fake voices
[2, 14]. In recent years, end-to-end (E2E) approaches have become
increasingly popular which leverage deep neural network (DNN)
models to automatically extract speech features and directly differ-
entiate between real and synthetic speech. Many of these studies
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claim that their proposed methods achieve high effectiveness and
deliver excellent performance in evaluation experiments. Some even
report Equal-Error Rates (EER) below 1%. It indicates that existing
fake voice detectors can accurately identify fake voices, offering
robust technical support for mitigating the risks associated with
voice cloning abuse. However, the actual situation may not be as op-
timistic as it appears. Recent research [28] introduces the concept of
speaker-irrelative features (SiFs), referring to non-speaker-related
information such as current noise, background noise, etc. The re-
search highlights that existing fake voice detectors rely heavily on
SiFs, leading to significant robustness issues. Furthermore, another
study [16] shows that removing specific SiFs from input audio leads
to a marked decline in the performance of these detectors.

These studies indicate that existing fake voice detectors pay
more attention to SiFs and fail to capture the essential difference
between fake and human voices, which makes it theoretically possi-
ble to deceive them by leveraging SiFs. The study [17] proposes an
attack framework based on SiFs and traditional adversarial attack
algorithms, achieving a high attack success rate. However, this ap-
proach requires a large number of queries to the target detector, and
the generation of attack samples is time-intensive, significantly re-
stricting its practical usability. To address the limitations of existing
solutions, this paper proposes a novel attack design. Our approach
is inspired by a neuroscience study using a brain-like neural net-
work model to predict monkey brain behavior. Similarly, we aim to
design a model to predict fake voice detector behavior, transforming
black-box attacks into white-box attacks. We observe that recent ad-
vanced fake voice detectors increasingly rely on pre-trained speech
representation models as feature extractors. These models typically
have a large number of parameters and play a critical role in influ-
encing detector decisions. Theoretically, by designing a fake voice
detector that leverages these speech representation models, we can
predict the behavior of other detectors utilizing similar models.

Based on this observation and SiFs, we propose a novel black-
box attack framework, SiFMimicEvader, targeting fake voice de-
tectors. This framework achieves a high success rate in black-box
attack scenarios, requiring few queries or, in some cases, none at
all. Specifically, SiFMimicEvader uses a generation model to create
noise perturbations and incorporates a fake voice detector with
a pre-trained speech representation model. This detector mimics
the behavior of other detectors and functions as a discriminator
to guide the generation model’s training. Furthermore, we intro-
duce a series of SiFs editing operations to enhance the attack’s
effectiveness.

The main contributions of this paper are summarized as follows:
1) We analyze the emerging trends in fake voice detection and
propose utilizing speech representation models, which are
widely used in this field, to predict the behavior of fake voice
detectors, thereby indirectly transforming a black-box attack into a
white-box attack; 2) We propose SiFMimicEvader, a new black-box
attack framework designed to evade fake voice detection, which
leverages multiple SiFs as attack features and enables real-time
generation of attack samples with minimal query overhead; 3) We
conduct a series of experiments to evaluate the success rate, attack
sample quality, and query efficiency of our framework, and the
results show that our method significantly outperforms existing
approaches.

Trovato et al.

2 Related Works
2.1 Fake Voice Detection

Early synthetic voice detection methods focused on traditional
features like spectral differences. With deep learning advancements,
mainstream methods now use deep neural networks, categorized
into four types: traditional feature-based methods, computer vision
(CV)-based methods, E2E-based methods, and other novel methods.

Traditional feature-based methods: These methods convert
raw audio into traditional audio features like spectrum and design
back-end models for classification. In 2019, Alzantot et al. [2] pro-
posed a detection method based on ResNet by combining multiple
traditional features. Li et al. [25] improved ResNet with Res2Net
for multi-scale feature learning, enhancing generalization against
unknown attacks. In 2021, Gao et al. [12] extracted artifacts on
log-Mel spectrograms using 2D discrete cosine transform (DCT),
forcing back-end networks to learn advanced representations from
long-term modulation patterns of audio inputs.

CV-based methods: These approaches convert audio features
into images and borrow deep-learning models from image pro-
cessing for detection. In 2019, Farid et al. [1] converted bispectral
analysis features into images and classified them using SVM, which
is the first CV-based approach. In 2021, Ballesteros et al. [3] pro-
posed Deep4SNet, which uses histograms to represent voice data
distributions and employs a Convolutional Neural Network (CNN)-
based back-end model for classification.

E2E-based methods: These approaches process raw audio di-
rectly for detection without requiring additional feature extraction
and are the most widely used approaches in recent years. In 2020,
Tak et al. [35] introduced RawNet2, an end-to-end Al-synthetic
audio detection system using sinc convolutions and residual blocks.
In 2021, they designed RawGAT-ST [34], a model based on graph
attention networks. In 2023, Ding et al. [11] proposed SAMO, which
employed multi-center clustering to detect synthetic audio. Guo et
al. [15] utilized the pre-trained audio representation model WavLM
for Al-synthetic audio detection. In 2024, Zhang et al. [45] proposed
an end-to-end detection model including a sensitive layer selection
(SLS) module based on the pre-trained model XLS-R.

Other methods: Some detection methods adopt unconventional
approaches. In 2020, Wang et al. [43] developed DeepSonar, a sys-
tem that employs neuronal activity from an Al-driven speaker
recognition system, considering it as a crucial feature for detecting
synthetic audio. In 2022, Blue et al. [5] modeled audio from an artic-
ulatory phonetics perspective for detection. However, the detection
time of this approach is notably high, making it challenging to
implement in real-world scenarios.

2.2 Attacks on Audio Security Systems

In general, audio security systems can be divided into two types:
speaker verification systems and fake voice detection systems. The
former is primarily used to determine whether the speaker’s iden-
tity matches expectations, while the latter is focused on detecting
whether a piece of audio has been artificially synthesized. These
two systems can both function independently and work together
to form a high-security voice authentication system.

Speaker verification systems attacks: Replay attacks, once a
classic method to target speaker verification systems, are ineffective
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against dynamic passphrases and have largely faded in practice.
Researchers have since turned to adversarial generation techniques.
Kreuk et al. [23] used the Fast Gradient Sign Method (FGSM) to
perform both white-box and black-box attacks on speaker verifica-
tion systems, demonstrating the capability of adversarial attacks to
deceive such systems. Li et al. [26] extended FGSM-based attacks
by enhancing the transferability of adversarial samples to other
speaker verification systems. Tian et al. [38] proposed a black-box
attack method for speaker verification systems within a feedback-
controlled VC framework. With advancements in Al voice cloning,
attackers now focus on generating synthetic audio to bypass verifi-
cation systems, as discussed earlier.

Synthetic audio detection attacks: Before the rise of voice
cloning technology, voice-based spoofing was costly and ineffective,
leading to late-starting research on attacks targeting synthetic audio
detection systems, with attack theories and methods being more
traditional. In 2019, Liu et al. [27] proposed attack schemes based on
FGSM and Projected Gradient Descent (PGD). In 2022, Liu et al. [29]
first introduced a speaker-irrelative feature-based evasion theory at
Black Hat USA, presenting a proof-of-concept framework. In 2023,
Kassis et al. [22] successfully bypassed commercial security-critical
voice authentication systems by deploying both Al synthetic audio
detection and speaker verification systems by utilizing multiple SiFs
during voice synthesis. Liu et al. [17] developed a targeted evasion
method that can defeat any black-box fake voice detection system
by combining fuzz testing with speaker-irrelative feature theory. In
2024, Zuo et al. [49] introduced an adversarial attack method based
on TTS technology, which is the first to perform both adversarial
and spoofing attacks using any speech content and timbre.

3 Motivation and Insight

Recent research shows high accuracy in fake voice detection un-
der ideal conditions, proving detectors can effectively distinguish
human voices from fake voices. However, several recent research
studies have challenged this perspective. A recent study [28] intro-
duces the concept of SiFs and highlights that existing fake voice
detectors tend to overfit to SiFs, resulting in significant robustness
issues. Another study [16] shows that removing specific SiFs led to
anotable decline in the performance of existing fake voice detectors.
This suggests that existing fake voice detectors rely heavily on SiFs
rather than capturing the fundamental distinctions between fake
and genuine voices.

In theory, if fake voice detectors rely on SiFs to distinguish fake
voices, they can be deceived by altering the SiFs in the fake voices.
Currently, most attacks on Al systems are based on traditional
adversarial attacks. However, this approach has several notable
limitations: 1) Query limitation: Real-world fake voice detectors
often restrict the number of queries per user within a set timeframe.
Traditional adversarial attacks, which rely on multi-round iterative
optimization and numerous queries, are thus limited in effective-
ness. 2) Real-time limitation: Many scenarios, like voice calls
or online conferences, demand real-time attacks. However, most
traditional adversarial methods require extensive iterations tak-
ing several minutes, making them impractical for such settings. 3)
Universality limitation: Existing attack methods typically need
optimization for specific detectors or samples. Attackers seeking
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minimal interaction to maintain stealth and reduce costs find these
methods inadequate, as they lack broad applicability.

In 2019, a neurological study [4] demonstrated that DNN mod-
els structured similarly to the brain could predict brain activities,
implying that designing DNNs resembling the target model may
also enable activity prediction. Inspired by this study, we propose a
new attack methodology called adversarial neural mimicry attack
(ANMA) to deceive the fake voice detectors. ANMA utilizes the
speech representation models which are widely used in fake voice
detectors in recent years as the breakthrough to mimic the fake
voice detectors. Speech representation models are typically trained
using unsupervised learning on large-scale datasets to extract mean-
ingful representations of speech. These models are widely used in
fake voice detectors due to their strong feature extraction capabil-
ities. Most of these models are open-source, trained on the same
public datasets, and have similar structures. As a result, their out-
puts are often comparable, meaning that using a different model
can still produce similar results.

Real-World Attack Stage

Attacker Target Detector

Attack Voice
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Figure 1: The ANMA attack process

The attack process of ANMA is illustrated in Figure 1. The
mimicry model is a fake voice detector that uses a speech repre-
sentation model as its feature extractor. During the neural mimicry
stage, the attacker creates attack samples by mixing fake voice
perturbations generated by the attack generator. The generator
is optimized until it deceives the mimicry model, after which it
is used to attack the target detector. Using ANMA, the attacker
can overcome the limitations outlined above. For the query limita-
tion, minimal interaction during optimization reduces the need for
numerous queries. To address real-time constraints, a GAN-based
attack generator can produce samples instantly. For universality, the
mimicry model can theoretically replicate detectors using speech
representation models, as these models yield similar outputs and
significantly influence detector behavior. Additionally, for detec-
tors without speech representation models, the mimicry model can
still partially replicate their behavior. This is because both types
of detectors perform the same task, and the speech representation
model extracts richer feature information, often encompassing the
features emphasized by other models.

4 Methodology

4.1 Overview

In this paper, we propose a novel attack framework, SiFMimicE-
vader, designed to deceive fake voice detectors. 'SiF’ stands for
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Figure 2: The SiFMimicEvader framework

speaker-irrelative features, "Mimic’ reflects the ANMA design prin-
ciples, and ’Evader’ signifies the attack strategy aimed at evading
fake voice detection. The attack goal of SiFMimicEvader is to evade
fake voice detection. To be specific, let x represent a fake voice, D(-)
represent a fake voice detector, and E(-) represent SiFMimicEvader.
The attack process can be represented as:

D(E(x)) = Real Diff(x,E(x)) < threshold (1)

Our approach leverages ANMA and SiFs as its foundation. Specif-
ically, our attack is based on two main prerequisites: 1) Existing
fake voice detectors tend to overfit to SiFs, meaning that modi-
fying these specific SiFs can influence their judgments; 2) Recent
advanced fake voice detectors frequently use speech representa-
tion models as feature extractors. Developing a fake voice detector
based on a pre-trained speech representation model can effectively
replicate the behavior of these detectors.

The structure of SiFMimicEvader is shown in Figure 2. SiFMim-
icEvader is a GAN-based attack framework that manipulates spe-
cific SiFs in the input fake voice to execute attacks. We select the
background noise, silence segments before and after human voice,
and the sampling rate of the audio file as the target features which
are extremely representative SiFs.

SiFMimicEvader comprises three main components: a noise per-
turbation generator, a SiFs editor, and a mimic discriminator. The
noise perturbation generator is a DNN-based audio data generation
model that transforms random input data into an ideal noise per-
turbation. The SiFs editor is responsible for performing a series of
editing operations on SiFs of the target fake voice to deceive the fake
voice detectors. SiFMimicEvader takes the target fake voice as input.
First, a data pre-processing model is used to remove specific SiFs
from the input fake voice. Next, a silence perturbation is generated
based on the noise perturbation which is the output of the noise
perturbation generator. These two perturbations are then combined
with the input fake voice to produce the attack sample. Finally, SiFs
editor resamples the attack sample to further increase the attack

success rate. The mimic discriminator is a fake voice detector built
on ANMA principles to replicate the behavior of other detectors. It
comprises a speech representation model as the upstream feature
extractor and a downstream network for additional feature process-
ing. This component is used exclusively during the training phase
to develop a high-quality noise perturbation generator.

4.2 SiFs Selection

SiFMimicEvader aims to edit the specific SiFs of the input fake voice
to deceive the fake voice detector into making wrong judgments.
The selection of the SiFs used to attack follows the following two
basic principles: 1) The SiFs perturbation must make sure that it does
not affect the content of the input fake voice; 2) The perturbation
should cause as little damage to the hearing as possible to ensure
the stealth of the attack.

Following these principles, we conduct extensive research and
experimental testing on fake voice detectors and select three rep-
resentative SiFs: background noise, silence segments before and
after human voice, and sampling rate. The rationale behind these
choices is outlined below.

Background noise: Human voice recordings inevitably contain
background noise due to environmental factors and device limi-
tations, even in professional settings where thermal noise from
electronics persists. Similarly, fake voices generated by synthesis
algorithms exhibit mechanical noise, varying by algorithm. The
differing noise distributions between human and fake voices are
critical for detectors to distinguish them. However, many detection
systems overfit to background noise [28], making it theoretically
possible to add specific noise perturbations to fake voice samples
to mislead detectors.

Silence segments before and after human voice: Human
voice recordings often include silence segments before and after
speech due to recording start and end times, whereas fake voices
typically lack such segments. This difference in silence patterns can
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lead to detector overfitting, as noted in recent studies [6, 30, 46, 48].
While removing silence using voice activity detection (VAD) might
seem beneficial, it actually degrades detector performance, caus-
ing high false positive rates in real-world scenarios. Thus, silence
segments represent a potential vulnerability for targeted attacks.

Sampling rate: Most fake voice detectors process audio inputs of
a fixed length, truncating or padding clips to standardize their size.
However, these detectors often do not enforce a uniform sampling
rate, instead using the original file’s rate. This can cause distortions
when the actual sampling rate differs from the assumed rate. For
instance, truncating a file to 40,000 data points results in 2.5 seconds
at 16 kHz but only 1.75 seconds at 22.05 kHz. Such discrepancies
alter the proportion of silence segments, potentially impacting
detector accuracy and reliability.

4.3 SiFs Editor

The SiFs editor is responsible for modifying specific SiFs of the
input fake voice. The processing flow of the SiFs editor consists of
the following steps. First, the input audio signal x with an original
sampling rate f; is subjected to resampling. The signal is upsampled
to a target rate f, = 22.05 kHz:

x, = Upsample (x4, fu). (2)

This operation aims to increase the proportion of silence perturba-
tion in subsequent processing if target detectors do not enforce a
fixed sampling rate for input.

Next, the resampled signal x;, undergoes denoising using a de-
noising function D(-):

x; = D(xy). (3)

This process, implemented via a wavelet tool [9], eliminates back-
ground noise.

Following denoising, the noise perturbation P generated by the
noise perturbation generator is introduced. To reduce the impact
of perturbation P on the input voice, it is mapped to a target dis-
tribution characterized by mean y; and standard deviation o;. The
mapping operation is defined as:

P/:.Ut"'ft'P ,Llp) (4)
Op

where y1, and o), are the mean and standard deviation of the original
perturbation distribution. Then a length adjustment operation is
used to make the perturbation length match the length of the input:

o {cut(p',dim(x;,)) if dim(P’) > dim(x),

" |pad(P’,dim(x))) if dim(P") < dim(x)). ©)

The function pad(x, t) extends x to length ¢ by repeating its content,
while cut(x, t) extracts a segment of length ¢ from x. Additionally,
dim(x) denotes the length of x. The adjusted perturbation P" is
added to the denoised signal:

Xm =X, + P, (6)

A fixed-length silence perturbation S is then generated by ex-
tracting a noise perturbation segment of duration T; = 1.5s:

S = ExtractSegment(P’, Ty). 7)
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This silence perturbation is appended to both ends of the perturbed
signal x,,, forming the final adversarial sample:

Xarr = S||xmlS, ®)

where || denotes the concatenation operation.

4.4 Noise Perturbation Generator

The noise perturbation generator is designed to produce ideal noise
perturbations in real-time while minimizing the number of required
queries to the greatest extent possible. To achieve this, we employ
a DNN-based model as the generator. For our implementation in
this paper, we adopt the same generator structure as used in the
study [21]. The work introduces a GAN-based framework to achieve
high-quality voice conversion and we refer to its generator network
structure in this work.

Specifically, the noise perturbation generator processes a mel-
frequency spectrum input of size 35x128. For the input, we exper-
iment with various options and ultimately select random data of
size 35 X 128 for our attack. Alternative inputs, such as a real voice
sample from the same speaker, are also tested but result in sub-
optimal performance. Initially, a convolutional encoder filters out
noise information and aggregates features from the input spectrum.
The spectrum is then transformed into sequence data through two
down-sampling blocks and a conversion block. Subsequently, a
residual module, consisting of nine residual blocks, performs a deep
transformation on the sequence distribution. Following this, an
up-sampling and conversion operation restores the spectrum data.
Finally, the output layer maps the spectrum to 1D voice data. Lever-
aging the noise perturbation generator, SiFMimicEvader learns the
noise distribution most likely to induce anomalies in the output of
the upstream speech representation model of fake voice detectors.

4.5 Mimic Discriminator

The mimic discriminator aims to mimic the behavior of the fake
voice detectors including the speech representation models to indi-
rectly convert black-box attacks to white-box attacks. It is a binary
classification model exclusively utilized during training to guide
the optimization of the noise perturbation generator by providing
feedback on its outputs. The design of the discriminator can be
divided into two parts: upstream selection and downstream design.

Upstream selection: There are widely used speech representa-
tion models in multiple downstream applications in the audio field.
These models have similar structures and are trained with specific
open-source datasets. To achieve high mimic similarity, we select
the wav2vec2.0-xlsr [8] as our upstream feature extractor, trained
on a massive dataset spanning 436k hours of speech data across 128
languages, making it the most widely used pre-trained upstream
model in fake voice detection. The model has three parameter sizes:
300M, 1B, and 2B. We use the 300M version, the most commonly
used, in our implementation. The output of the wav2vec2.0-xlsr
is a 24-layer feature map. Some existing detectors choose to fuse
all or part of the layer features, while others select only the last
layer map. To increase the versatility of the attack, we design a fea-
ture fusion module to fuse the last 12-layer maps. Let [F;, Fa, ..., Fp]
represent the feature map of each layer and [wy, wy, ...w, | repre-
sent the fusion weights. The specific process of feature fusion is as
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follows:

n
Fusion Map = Z w;F; 9)

i=1
Downstream design: The objective of the downstream model
is to identify anomalous patterns or deviations in the output of the
upstream feature extractor. In this paper, we utilize a light-CNN
(LCNN)-based downstream network, as described in [24], which is
also part of a baseline system from the ASVspoof2021 challenge [10].
The downstream network consists of multiple convolution-based
blocks for feature aggregation and a Bi-directional Long Short-
Term Memory (BiLSTM) module to model cross-frame patterns,
ultimately converting frame-level features into an utterance-level

representation.

4.6 Training and Fine-Tuning

The optimization of SiFMimicEvader includes two phases: training
and fine-tuning. The detailed process of the two phases is as follows:

Training: During the training stage, we adopt a GAN-like ap-
proach. We use a pre-trained mimic discriminator, which is trained
on the ASVspoof2019 LA dataset, as the discriminator. Unlike stan-
dard GANs, the parameters of the discriminator remain fixed through-
out the entire training process. We utilize the ASVspoof2019 LA
training subset as the training dataset. First, attack samples are
generated through the noise perturbation generator and SiFs ed-
itor. These attack samples are then input into the discriminator
to obtain probability information. The parameters of the noise
perturbation generator are subsequently updated using this proba-
bility information and a cross-entropy loss function. Furthermore,
SiFMimicEvader can also be trained in a pure black-box scenario,
where the attacker only has access to labels without any probability
information.

Fine-tuning: The mimic discriminator can mimic the fake voice
detectors’ behavior including the speech representation model to
some extent. However, for detectors without speech representation
models, the mimicry may not be as accurate. Additionally, variations
in the downstream design of detectors based on speech represen-
tation models can introduce additional behavioral differences. To
optimize the attack effectiveness, we fine-tune the SiFMimicEvader
after training for different attack targets. Specifically, we use the
target detector as the discriminator to fine-tune the noise genera-
tor. The fine-tuning process is similar to the training. Furthermore,
SiFMimicEvader can also be fine-tuned in a pure black-box scenario,
where the attacker only has access to labels without any probability
information. The fine-tuning can significantly optimize the attack
effect of SiFMimicEvader with a small number of queries such as
hundreds or thousands.

5 Evaluation
Our evaluation aims to answer the following research questions:

e RQ1: Is SiFMimicEvader effective in attack performance
with low overhead?

e RQ2:Does the attack perturbation added by SiFMimicCracker
significantly impact the quality of the audio?

e RQ3: How much do different SiFs contribute to the attack’s
effectiveness?

Trovato et al.

5.1 Evaluation Setup

In this subsection, we will briefly introduce the evaluation environ-
ment information, the implementation details of SiFMimicEvader
used in this evaluation, baseline detectors’ information, and the
datasets used in the experiment. The specific information is as
follows:

Implementation Details: During the training stage of the noise
perturbation generator, we train for 30 epochs using the Adam
optimizer with an initial learning rate of 0.0001. The loss function
used is cross-entropy. In the fine-tuning stage, most conditions
remain the same as in the training stage, except for a reduced
learning rate of 0.00001. For the LCNN network used in the mimic
discriminator, we adopt the same structure as the LFCC-LCNN, a
baseline system from the ASVspoof2021 challenge, but replace its
feature extractor with the wav2vec2.0-xlsr-300m model.

Target detectors: We select seven high-performance fake voice
detectors from recent top conferences, journals, and challenges as
evaluation targets. Specifically, five detectors lack speech repre-
sentation models: RawNet2 [35], RawGAT-ST [34], AASIST [20],
Raw-pc-darts [13], and TSSDNet [18]. Two detectors, Tak-SSL [36]
and SLSforADD [45], incorporate speech representation models.
All detectors with speech representation models use the same pre-
trained model, wav2vec2.0-xlsr, which is the most widely used in
this field. This open-source model, trained on the largest dataset in
the field, achieves state-of-the-art performance and is the preferred
choice for nearly all detectors using speech representation models.
For all target detectors, we use the authors’ open-source imple-
mentations and default parameters. We determine the judgment
threshold by calculating the EER on the ASVspoof2019 LA evalua-
tion subset. If a detector’s output score exceeds its EER threshold,
the input is classified as a real voice.

Datasets: For baseline detectors, except for two detectors built
by us, we use the authors’ pre-trained weights for evaluation. All of
the baseline detectors are trained on the ASVspoof2019 LA dataset.
For the SiFMimicEvader, we also use the ASVspoof2019 LA dataset.
We select all of the spoof samples from the training subset as the
dataset during the training stage and use the corresponding samples
in the development subset during the fine-tuning stage. To simulate
a query-limited scenario, we select 4,800 samples and ensure an
equal number of samples from each spoof algorithm during the
fine-tuning stage.

Metrics: We define the success of our attack as the Success
Acceptance Rate (SAR), which represents the probability that an
attack sample is classified as a human voice sample. Specifically, let
the Acceptance Account (AA) denote the number of attack samples
classified as human voices, and the Rejection Account (RA) denote
the number of failed attack samples. SAR can then be calculated as

follows:
AA

SAR= ——"_ (10)
AA+RA

5.2 Attack Performance Evaluation (RQ1)

In this evaluation, we focus on answering RQ1: Is SiFMimicEvader
effective in attack performance with low overhead? To evaluate at-
tack performance, we use all spoof samples from the ASVspoof2019
LA evaluation subset, comprising 63,882 audio files. To mitigate
the impact of original silence segments, we preprocess the samples
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Table 1: The performance comparison result.

Attack Method Target Detectors Average
RawNet2 RawGAT-ST AASIST Raw-pc-darts TSSDNet Tak-SSL SLSforADD
SiF-DeepVC 81.68% 37.90% 12.34% 24.28% 6.41% 0.35% 0.26% 23.32%
SiFDetectCracker 69.50% 51.19% 57.45% 70.08% 50.48% 18.73% 6.00% 40.42%
Kassis et al. 9.27% 0.99% 3.01% 3.50% 24.65% 0.25% 0.01% 5.96%
SiFMimicEvader 65.22% 55.84% 41.21% 63.83% 50.82% 62.34% 31.22% 52.92%
SiFMimicEvader (label-only) 66.79% 59.00% 41.17% 63.88% 51.44% 62.17% 55.90% 57.19%

using Sound Exchange (SoX), a widely adopted audio processing
tool, to remove silence segments prior to evaluation. We select
three advanced attack methods for comparison: SiF-DeepVC [28],
SiFDetectCracker [17], and Kassis et al [22]. SiF-DeepVC and Kassis
et al. are universal attack methods, not optimized for a specific
target. SiFDetectCracker, based on traditional adversarial attack
algorithms, reports excellent performance. All implementations are
collected from the authors’ open-source repositories, with attack
parameters matching those in the original versions.

SiF-DeepVC and Kassis et al. generate attack samples rapidly,
so we use the same test data size as SiFMimicEvader. In contrast,
SiFDetectCracker requires iterative optimization, consuming about
five minutes per audio attack, making large-scale evaluation imprac-
tical. This makes evaluating it on a dataset with tens of thousands
of samples impractical. Therefore, we evaluate SiFDetectCracker
on 195 spoof samples, selected using the method reported in their
paper. Since different target detectors exhibit varying levels of mis-
judgment, we remove the misjudged samples of each detector from
their respective datasets to eliminate this influence.

The results in Table 1 show that SiFMimicEvader achieves excel-
lent performance, with average SAR exceeding 50% regardless of
using probability or label-only feedback, outperforming existing
methods. Notably, the label-only version performs better, suggest-
ing that too much target information may interfere with the dis-
criminator’s learned features. While some attacks (e.g., SiF-DeepVC
and SiFDetectCracker) perform well on detectors without speech
representation models (e.g., >80% SAR on RawNet2), their success
drops sharply (<20% SAR) on those with such models, highlighting
the robustness of representation-based detectors. Moreover, SiF-
DeepVC produces noticeable perturbations, and SiFDetectCracker
requires excessive queries and 5 minutes per attack. In contrast, our
label-only method achieves over 50% SAR on representation-based
targets, demonstrating ANMA’s effectiveness in enhancing attack
performance against advanced detectors.

Most recent advanced fake voice detectors rely on speech repre-
sentation models to enhance feature extraction capabilities, result-
ing in superior performance compared to detectors without such
models. This trend suggests that integrating speech representation
models will be a key development in the design of future fake voice
detectors. The superior attack performance against targets includ-
ing speech representation models further demonstrates that ANMA
holds significant potential against emerging detectors in the future.
Additionally, the high SAR when attacking detectors without up-
stream models further shows that our approach can deceive a wide
range of fake voice detectors.

Query time represents a crucial performance metric for evaluat-
ing the efficiency of the attack. SiIFMimicEvader requires no queries
during the training stage and only a limited number of queries

Fine-Tuning Performance
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Figure 3: The fine-tuned attack performance with different
training sample sizes.

during the fine-tuning stage. To assess the extent of SiFMimicE-
vader’s reliance on queries, we evaluate its attack performance
using varying fine-tuning sample sizes. The result is shown in Fig-
ure 3. Overall, the SAR shown in this figure demonstrates that
SiFMimicEvader does not rely on large-scale query operations in
most cases. For most detectors without speech representation mod-
els, increasing the fine-tuning sample size has minimal impact on
attack performance. This suggests that the unreasonable judgment
factors present in these models, which can be exploited for the at-
tack, also exist in our discriminator. Consequently, fine-tuning does
not provide additional useful information to enhance the attack.
For other detectors, the attack performance positively correlates
with the sample size. Except for SLSforADD, significant SAR gains
are achieved after fine-tuning with just 1,200 queries, a feasible
number for real-world attacks. Even for SLSforADD, the least sensi-
tive detector, SAR exceeds 20% after fine-tuning with 1,200 queries.
Furthermore, queries are required solely during the fine-tuning
stage, allowing the attacker to distribute query requests over an
extended period. Once fine-tuning is completed, the attacker can
generate attack samples for any voice input without the need for
additional queries. This demonstrates that our attack can adapt to
attack scenarios with strict requirements on the number of queries.

5.3 Quality Evaluation (RQ2)

This evaluation primarily addresses RQ2: Does the attack pertur-
bation added by SiFMimicCracker significantly impact the quality
of the audio? To evaluate the quality of our attack samples, we
use both objective and subjective methods. The objective evalua-
tion focuses on two metrics: the signal-to-noise ratio (SNR) and
the similarity score (SS), which ranges from -1 to 1, with higher
values indicating greater audio similarity. The SNR measures the
perturbation level relative to the original audio, while the SS, com-
puted using an ASV system [42], quantifies the similarity between
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original and attack samples. For subjective evaluation, 30 volun-
teers assessed the attack samples using a structured questionnaire
without prior knowledge of the evaluation’s purpose to ensure
unbiased feedback. We randomly selected 5 original samples and
7 corresponding attack samples from the attack performance data
for different target detectors, pairing each original with its attack
sample. For each pair, participants answered two multiple-choice
questions: one on the similarity between the samples and the other
on the noticeability of added noise perturbations. For the questions,
a scoring scale from 0 to 5 is used, where 0 indicates ’completely
different’ and 5 indicates ’completely consistent’ with regard to
similarity.

Table 2: The quality evaluation result.

Objective Evaluation Subjective Evaluation
Targets SNR s Similarity Noise
RawNet2 8.89 0.73
RawGAT-ST 7.83 0.75
AASIST 768 077 3:32.68% 3:31.43%
Raw-pe-darts 7.76 0.74 e Do
TSSDNet 856 074 2 58.57% 2 52.68%
TakeSSL o6 075 0-1:8.57% 0-1: 15.71%
SLSforADD 7.41 0.77
Average 7.96 0.75

The quality evaluation results are shown in Table 2. In the objec-
tive evaluation, the average SNR is approximately 8, indicating that
while the attack samples contain some noise, it is unlikely to impair
human perception of the underlying information. The SS metric
supports this observation, showing a similar trend. In the subjective
evaluation, the vast majority of participants perceived our attack
audio as very similar to the original audio, with little to no notice-
able noise. This suggests that the perturbation introduced by our
attack is difficult for humans to detect under most circumstances.
Additionally, when we proactively asked participants about their
impressions of the attack samples, most of them believed the noise
they heard was simply background noise from the device.

Amplitude (dB)

(b) SiFMimicEvader

(a) Original

Figure 4: The spectra of the original sample and attack sample
generated by SiFMimicEvader.

The spectrum of our attack sample is shown in Figure 4. We
randomly select an attack sample and its corresponding original
sample to visualize their spectra. As shown, the main components
of the speech spectra are nearly identical, further confirming that
the noise perturbation has minimal impact on the original audio in-
formation. The primary difference is that the attack sample includes
additional silence before and after the audio, which is typically not
perceived as abnormal.

Trovato et al.

5.4 Ablation Evaluation (RQ3)

In this evaluation, we mainly focus on RQ3: How much do different
SiFs contribute to the attack’s effectiveness? To analyze the impact
of each component on attack performance, we design a series of
comparison groups. In each group, a specific component of the
attack framework is removed, while all other conditions are kept
consistent with those used in the attack performance evaluation.
Specifically, we establish five experimental groups: the raw group,
no noise group, no silence group, no resampling group, and no
fine-tuning group. The raw group maintains the same conditions as
the attack performance evaluation, while the other groups exclude
a specific SiFs operation, as indicated by their respective names.
Since the silence segment perturbation inherently includes the noise
perturbation, we utilize a segment consisting entirely of zeros as
the silence segment perturbation in the no noise group.

Table 3: Ablation evaluation result. The metric is SAR. C1-C4
represent no noise group, no resampling group, no silence
group, and no fine-tuning group respectively.

Targets Groups
Raw c1 c2 C3 C4

RawNet2 66.79% 64.66% 68.67% 0.75% 66.48%
RawGAT-ST 59.00% 50.35% 66.65% 0.10% 49.55%

AASIST 41.17% 40.48% 41.55% 0.35% 40.22%
Raw-pc-darts 63.88% 63.60% 54.65% 0.12% 63.67%

TSSDNet 51.44% 3.99% 54.77% 8.47% 23.48%

Tak-SSL 62.17% 28.59% 53.75% 0.00% 34.35%
SLSforADD 55.90% 3.41% 47.47% 0.02% 16.14%

Average 57.19% 36.44% 55.36% 1.40% 41.99%

The ablation evaluation results are presented in Table 3. Over-
all, all comparison groups show varying degrees of performance
decline. In the no noise group, the average performance drop ex-
ceeds 20%, highlighting the critical role of noise perturbation in
the attack. On the other hand, the results for the no silence group
demonstrate that the silence segments before and after the human
voice are crucial to the success of our attack. Successfully executing
the attack without silence segment perturbation—relying solely
on noise perturbation and resampling—is almost impossible. This
suggests that the performance decline observed in the no noise
group is primarily due to changes in the noise within the silence
segments. In the no fine-tuning group, the SAR remains above 40%,
outperforming other comparison attack methods in the attack per-
formance evaluation. This demonstrates that our attack maintains a
significant performance advantage even without fine-tuning. Con-
sequently, it achieves excellent performance even under the most
stringent constraints.

6 Conclusion

In this paper, we introduce a novel attack strategy called ANMA,
which leverages open-source speech representation models com-
monly used in fake voice detection to transform black-box attacks
into white-box attacks. Building on this concept, we design a new
black-box attack framework, SiFMimicEvader, combined with SiFs
to deceive fake voice detectors. The evaluation results demonstrate
that SiFMimicEvader outperforms other attack methods, achieving
an attack success rate exceeding 60%. Furthermore, it eliminates the
need for large-scale targeted queries and exhibits high robustness,
underscoring its strong potential for real-world application.
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