
SigScope: Detecting and Understanding Off-Chain Message
Signing-related Vulnerabilities in Decentralized Applications

Sajad Meisami
Illinois Institute of Technology

Chicago, United States
smeisami@hwk.iit.edu

Hugo Dabadie∗
INRIA

Lyon, France
hugo.dabadie.cs@gmail.com

Song Li
Zhejiang University
HangZhou, China
songl@zju.edu.cn

Yuzhe Tang
Syracuse University

Syracuse, United States
ytang100@syr.edu

Yue Duan†
Singapore Management University

Singapore, Singapore
yueduan@smu.edu.sg

Abstract

In Web 3.0, an emerging paradigm of building decentralized ap-
plications or DApps is off-chain message signing, which has ad-
vantages in performance, cost efficiency, and usability compared
to conventional transaction-signing schemes. However, message
signing burdens DApp developers with extra coding complexity
and message designing, leading to new security risks.

This paper presents the first systematic study to uncover and
characterize the security issues in off-chainmessage signing schemes
and the DApps built atop them. We present a holistic static-analysis
framework, SigScope, that uniquely combines the insights extracted
from DApp front-end code (HTML and Javascript) off-chain and
back-end smart contracts on-chain. We evaluate SigScope using the
top 100 DApps to showcase its effectiveness and efficiency. Further,
we leverage SigScope to study a large dataset of 4937 real-world
DApps and show that 1579 DApps (including 73% of the top 100)
rely on the off-chain message signing feature, and 1154 contain
vulnerabilities. Finally, we use two real-world vulnerabilities in
popular DApps to showcase our findings.

CCS Concepts

• Security and privacy→ Software and application security.

Keywords

Blockchain Security; Smart Contract; Decentralized Applications;
Off-Chain Message Signing; Signing-related Vulnerabilities

ACM Reference Format:

Sajad Meisami, Hugo Dabadie, Song Li, Yuzhe Tang, and Yue Duan. 2025.
SigScope: Detecting and Understanding Off-Chain Message Signing-related
Vulnerabilities in Decentralized Applications. In Proceedings of the ACMWeb
Conference 2025 (WWW ’25), April 28-May 2, 2025, Sydney, NSW, Australia.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3696410.3714686

∗This author began participating in this research while affiliated with the Illinois
Institute of Technology and completed it at INRIA

†Corresponding authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1274-6/25/04
https://doi.org/10.1145/3696410.3714686

1 Introduction

In Web 3.0, a decentralized application (DApp) provides a web-2.0
compatible user interface (e.g., HTML and Javascript) and runs
on a decentralized back-end (i.e., blockchains and smart contracts),
which is different from a web-2.0 application running on centralized
web servers. By avoiding the centralized trust and associated risks,
DApps have gained proven popularity in cryptocurrencies, decen-
tralized finance or DeFi [19, 40, 48, 61], decentralized resource mar-
kets [1, 43], decentralized social networks [11], and other domains.
For instance, applications in DeFi have experienced a whopping
124% year-over-year (YoY) increase in unique active wallets (UAW)
with a total value locked (TVL) worth 103B USD in 2023 [22].

Conventionally, an off-chain DApp user, like a wallet, signs a
transaction of a fixed format (e.g., an Ethereum transaction of from,
to, value, and data fields), and the blockchain network receiving the
transaction verifies the signature in the blockchain-client software
(e.g., in Ethereum Geth [9]) before relaying it to the smart-contract
layer. However, this workflow incurs transactions per wallet use
and is slow, expensive (e.g., long transaction finality and increasing
prices or demand over limited supply), and of limited usability (e.g.,
accessible only to users holding gas fee like Ether). To solve these
issues, a modern DApp workflow, known as off-chain message sign-
ing [51], is proposed and adopted, which allows the user to sign an
application-specific “message” instead of a fixed transaction and
lets a DApp web server aggregate and bundle multiple messages
into a transaction sent to the blockchain. On the blockchain, signa-
ture verification occurs in smart contracts instead of the blockchain
clients. Message signing achieves better performance and usability
at lower cost (e.g., by transaction bundling [62, 63] and supporting
zero-Ether transaction senders [8, 10]), and enjoys a wide and in-
creasing adoption in practice: Message signing has been used as
an indispensable primitive in constructing rollups and state chan-
nels [7, 12–14], meta transactions [6], account abstraction [8] and
many other blockchain-scaling solutions. Our measurement study
on DappRadar [4] shows 73% of the top 100 EVM-compatible DApps
there depend on message signing.

With the advantageous performance and usability comes ex-
tra coding complexity. Message signing, unlike transaction sign-
ing, requires DApp developers to design and decide the security-
critical function in signing and verification. Unfortunately, design-
ing application-specific signatures is error-prone. Specifically, the

4284

https://orcid.org/1234-5678-9012
https://orcid.org/0009-0008-3693-5314
https://orcid.org/0000-0002-7961-8502
https://orcid.org/0000-0002-8911-106X
https://orcid.org/0000-0003-1049-9645
https://doi.org/10.1145/3696410.3714686
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696410.3714686
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696410.3714686&domain=pdf&date_stamp=2025-04-22

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Sajad Meisami, Hugo Dabadie, Song Li, Yuzhe Tang, & Yue Duan

DApp developers have to design what information to include in
the signed “message”, where incomplete message designs can rein-
troduce classic man-in-the-middle risks to the system, like replay
attacks. Besides, the fast-evolving APIs and EIPs (Ethereum Im-
provement Proposals [2, 3]) for message signing makes it hard
for developers to get their API use correct and secure. For in-
stance, there are currently five distinct signing methods imple-
mented, namely eth_sign, personal_sign, eth_signTypedData_v1,
eth_signTypedData_v3, and eth_signTypedData_v4. Yet, it is not
well documented in terms of the security implications of these
APIs, which confused even skilled DApp developers, leading to API
misuse and insecurity, as our research shows.

Problem. This paper tackles the wide open research problem
in the field: Detect and understand the security issues in off-chain
message signing in emerging DApps. Despite the large body of
security research by smart contract analysis (e.g., static analy-
sis [15, 32, 52, 53, 57], symbolic execution [20, 31, 39, 41, 46, 47, 58],
fuzzing techniques [17, 30, 34, 45, 64, 65, 67, 70], and applications
of formal methods[16, 25, 35, 49, 54, 60]), there is a lack of research
on understanding the emerging issues caused by off-chain message
signing. Specifically, the existing research focuses on understanding
the security of back-end smart contracts and often overlooks the
front-end components. Given that message signing entails the use
of cryptographic API (e.g., ecrecover) in smart contracts, the existing
research detecting cryptographic misuses like CRYSOL [70] ignores
the insecurity caused by the front-end or the interaction between
the front-end and back-end, rendering it ill-suited for a comprehen-
sive understanding of DApp security. VetSC [25] presents a study
for DApp safety vetting by evaluating both front-end and back-
end elements. However, its purpose is to derive information from
the front-end user interfaces by using natural language process-
ing (NLP) techniques to understand smart contract code semantics.
VetSC does not conduct program analysis of the front-end code and
is inapplicable to finding the target vulnerabilities of this work, in
which a substantial amount of the code related to off-chain message
signing is situated within the front-end segment, such as HTML
and JavaScript, and analyzing off-chain code is necessary. Overall,
understanding the insecurity of off-chain message signing entails
the holistic program analysis across a DApp’s front and back-end.

Solution. To address these challenges, we conduct the first system-
atic study to uncover and understand the security issues in off-chain
message signing by holistically assessing its entire workflow on-
and off- blockchains. We specifically analyze all message-signing
methods available to DApp front-ends and their corresponding
verification procedures in the back-end. As a result, we compile a
catalog of vulnerability patterns related to off-chain message sign-
ing. More importantly, we propose an innovative hybrid analysis
technique that automatically identifies pattern-matching vulner-
abilities through interprocedural static program analysis applied
cohesively to both front-end and back-end code. Specifically, given
a DApp, we conduct a pre-processing phase to identify all the sign-
ing and verification methods and eliminate the unreachable ones.
In the next phase, we employ a proposed algorithm to analyze the
back-end smart contract by performing static program analysis to
pinpoint the essential security features of off-chain message signing.
Our analysis relies on the intrinsic characteristics of these features

to identify them. Based on the extracted information, we further
analyze the front-end part of the DApp to comprehend the usage of
these security features and examine if they are correctly enforced
throughout the entire signing and verification process. Finally, we
organically combine the analysis results from both the front-end
and back-end to infer security vulnerabilities.

We implement and evaluate a prototype SigScope and conduct a
studywith representative datasets containing 4,937DApp, including
the top 100 DApps from DappRader [23]. The evaluation results
show that our tool can effectively and efficiently detect off-chain
message signing-related vulnerabilities. Furthermore, our large-
scale study discovers a total of 1154 vulnerable DApps in the real
world, including some extremely popular ones. Finally, we conduct
a case study using real-world vulnerabilities in Compound [19] and
Synthetix [56] to showcase the efficacy of SigScope.

Contributions. The contributions are summarized as follows:
•We analyze off-chain message signing methods from a security
perspective, defining signing-related and verification-related secu-
rity vulnerabilities and outlining various attack scenarios associated
with these security concerns.
•We design and implement a novel automated static analysis frame-
work, SigScope, which performs hybrid analysis on both the front-
end and back-end of DApps to detect and analyze off-chain message
signing methods and associated security vulnerabilities.
•We evaluate SigScope using a large dataset that includes the top
100 DApps and conduct a large-scale study. The results indicate that
1579 DApps (including 73% of the top 100) rely on off-chain message
signing, and 1154 are vulnerable to attacks. We have reported these
vulnerabilities to the respective DApp creators.
•We make our prototype implementation and other artifacts pub-
licly available to facilitate further research1.

2 Background & Off-chain Message Signing

In Appendix A.1, we provide background knowledge on DApps,
their interactions with users, and the underlying blockchain. We
also describe how off-chain message signing works, offering insight
into the extremely fragmented signing methods.

2.1 Off-chain Message Signing Workflow

Off-chain message signing allows users to sign arbitrary messages
off-chain using their private keys and let DApps verify the signed
messages subsequently. It is an effective method to avoid signifi-
cant time and gas costs from traditional on-chain transactions. For
instance, for exchange DApps, this approach is widely employed to
pre-authorize transactions, allowing the receiver to process signed
orders from the sender promptly. Rather than executing buy or
sell orders directly on the blockchain, the sender signs messages
detailing the orders with his private key. These signed messages
are then placed in an off-chain order book. The receiver can quickly
access and execute these orders off-chain, bypassing the immediate
need for on-chain transactions and avoiding the related gas fees.
The validity of these off-chain orders can later be verified by the
DApp’s back-end smart contract.

1https://github.com/SIGSCOPE-Anon/SIGSCOPE

4285

https://github.com/SIGSCOPE-Anon/SIGSCOPE

SigScope: Detecting and Understanding Off-Chain Message Signing-related Vulnerabilities ... WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Figure 1: Off-chain Message Signing Workflow

The entire workflow, depicted in Figure 1, encompasses seven
steps and involves five key entities: end users of a DApp, a cryp-
tocurrency wallet, the DApp’s front-end, the back-end smart con-
tract, and the underlying blockchain. A cryptocurrency wallet is a
tool that enables users to securely store and manage their account
keys, execute transaction broadcasts, and facilitate the sending and
receiving of cryptocurrencies and tokens. Additionally, it serves
as a secure gateway for connecting to DApps. Popular wallets like
MetaMask [42] offer JavaScript APIs compliant with EIP-1193 [26]
standards. These APIs empower DApps to engage in various activi-
ties, such as requesting user accounts, accessing blockchain data,
prompting users to sign messages and transactions, and more.

The off-chain message signing process begins when the user
engages with the DApp’s UI (e.g., HTML) within the front-end. The
user inputs data and initiates actions, such as executing a token
transfer (Step 1). Following this, the front-end of the DApp presents
its requests, such as requesting message signing for a token transfer,
to the user via his/her cryptocurrency wallet, utilizing the Wallet’s
JavaScript APIs (Steps 2 & 3). Subsequently, the user can react to
these requests by either approving or rejecting them, conveying
their decision to the DApp’s front-end through the wallet (Steps
4 & 5). Upon approval, a signed off-chain message is created from
the user and relayed to the DApp. The DApp then forwards this
signed message to its back-end for verification and processing,
invoking relevant functions within the smart contract (Step 6). If
the verification succeeds and the DApp’s call is valid, it can modify
the blockchain state, such as transferring tokens (Step 7).

Throughout the procedure, cryptographic signatures are funda-
mental in authenticating the source and ensuring the consistency
of messages within off-chain computation contexts in DApps. Serv-
ing as a foundational element, these signatures underpin various
aspects of blockchain. They verify the signer’s consent to a message
or transaction, offering verification to the smart contract.

2.2 Signing Methods

Each blockchain account comes with both a public and a private
key. With the private key, accounts can sign data off-chain, creating
a unique signature for that specific data. Cryptocurrency wallets
and assorted libraries present various signing methods, as detailed
in Table 1, based on multiple EIPs [2, 3]. These methods are de-
signed to streamline the communication between DApps and users.
Nonetheless, they can be a source of confusion and security issues.

Table 1: Summary of Signing Methods

Signing Method

Human

Readability

Ease

of Impl

Secure

Prefix

DS

Data

Structure

eth_sign No Easy No No Arbitrary(hash)
personal_sign Yes Easy Yes No UTF-8 string

signTypedData_V1 Yes Moderate Yes No Array
signTypedData_V3 Yes Hard Yes Yes Struct
signTypedData_V4 Yes Hard Yes Yes Array, Struct, Recursive

eth_sign. This method offers a flexible signing mechanism that can
authenticate any hash value, enabling the signing of transactions
and diverse data forms. However, eth_sign lacks human readability
and essential security features, rendering it impractical for actual
applications. Notably, web3.eth.sign from the web3.js library offers
a comparable variant of this signing method. This method has been
deprecated and should not be used in any DApp.

personal_sign. This method operates similarly to eth_sign but en-
hances security by making messages human-readable and further
adding a safeguarded prefix, i.e., “\x19Ethereum Signed Message:\n
<length of message>”, to the message before its hashing and sign-
ing. While bolstering security, this also leads to increased computa-
tional load and a higher demand for storage resources compared to
eth_sign. The functions web3.eth.personal.sign from web3.js library
and signMessage() from ethers.js provide equivalent capabilities.

eth_signTypedData family. This family of methods is associ-
ated with the Ethereum Typed Data Signing Standard, denoted
EIP-712 [3]. The primary function entails signing structured data
following a predefined schema. These often encompass domain-
specific messages or authentication requests. A key advantage of
thesemethods is their ability to generate highly human-readable sig-
natureswhilemaintaining efficient on-chain processing. This family
includes three distinct signing methods. In eth_signTypedData_v1,
users are limited to signing arrays of primitive fields without any
domain separator. eth_signTypedData_v3 expands functionality by
enabling the signing of structs, albeit without support for arrays
and recursive data structures, but it has a Domain Separator, a.k.a,
DS, which consists of four major elements that specify relevant
DApp information in the signature’s message to prevent signature
missuses, including its name, version, blockchain network (referred
to as chainId), and the designated smart contract responsible for
the signature verification process (Verifying Contract, a.k.a, VC).
eth_signTypedData_v4 (Listing 4, Ln.15) also contains a DS (Ln.4)
and further introduces the capability to sign arrays, allowing for
the signing of structs containing any Solidity primitive field, in-
cluding arrays and arrays of structs. As of today, it is the most
recommended signing method for DApps to interact with users.

2.3 Signed Message Verification

After obtaining the signed message, the next phase is to verify
the message’s authenticity on the blockchain. This requires the
DApp to call the relevant contract by submitting the message via a
transaction, incurring an on-chain action and gas fee. Mainstream
blockchains (e.g., Bitcoin [44] and Ethereum [27]) leverage Elliptic
Curve Digital Signature Algorithm (ECDSA) [5], with signatures
comprising three parameters: r, s, and v.

As illustrated in Appendix A.2 Listing 5, Solidity includes a
universal accessible function named ecrecover (Ln.10). This function,
when given the four specific parameters, returns an address. The
signature is authentic if it matches the address of the signer. After

4286

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Sajad Meisami, Hugo Dabadie, Song Li, Yuzhe Tang, & Yue Duan

signature verification, the final phase processes the signed message.
For example, in a popular DApp UniswapV2, if the signature is
successfully authenticated within the permit function (Ln.12), it
activates the _approve function (Ln.16). This function authorizes
the DApp to handle the transfer of the user-specified token amount.

3 Off-chain Message Signing Security Analysis

Although off-chain message signing has become extremely popu-
lar, few developers know how to use the feature securely. According
to our research, even the most skilled developers from well-known
DApps are prone to errors or may use deprecated signing APIs
like eth_sign, resulting in huge security loopholes (more details in
Section 5). These security issues can be largely attributed to the
intricate nature of the off-chain message signing process. More seri-
ously, to date, there is no comprehensive research into this critical
and prevalent technique from a security standpoint.

In this section, we delve into an in-depth examination of the secu-
rity aspects of off-chain message signing, covering both the signing
and the verification stages. We aim to pinpoint the distinctions
between various signing methods and scrutinize the verification
procedures to uncover potential security vulnerabilities. We then
outline attack strategies that could potentially exploit these identi-
fied security risks. The research outcome can provide solid insight
for DApp developers to use the off-chain message signing securely.

3.1 Threat Model

Our foundational trusted elements include (a) blockchains, (b) the
runtime environment for smart contracts, (c) web servers delivering
DApp services, (d) client-side wallets and browsers, and (e) the
communication channels between browsers and services. This work
does not address attacks targeting vulnerabilities in the consensus
mechanism, peer-to-peer network, or mining. We do not consider
lower-level software attacks that compromise the operating system,
runtimes, or browsers. Additionally, network-level attacks aimed
at interrupting or intercepting traffic are also not within the scope
of this work. Our analysis studies the entire off-chain message
signing flow, including both signing and verification. We focus on
application-level vulnerabilities pertaining to the implementation
of smart contracts, the design of front-end interfaces, and their
interactions within the off-chain message signing process. Firstly,
DApp web interfaces may appear harmless but lack completeness
or accuracy. Secondly, errors made by developers can result in
incorrect or insecure smart contract code, which further affects
the security of off-chain message signing. Third, there could be
a disparity between the front-end implementation and the smart
contract. Attackers can exploit these, leading to financial losses.

3.2 Formal Definition

First, our study and assessment begin by dissecting every element
within the off-chain message signing process and enumerating all
the necessary conditions based on defined steps in Figure 1.

Definition 1. An off-chain message signing process consists of
the following components:

1.Secure Message Construction: At the end of Step 1, DApp’s
front-end constructs a secure form of the message, referred to as

𝑀 , to mitigate the risk associated with signing a wide range of
arbitrary message content, including predefined transactions. This
transformation can be achieved through methods such as padding.

2.Signing Method Selection: An appropriate off-chain signing
method must be selected to sign the constructed secure message M
(Step 2 & 3). Avoiding insecure or deprecated APIs and correctly
implementing security measures is crucial at this stage. Then, the
user can sign the provided message with his/her own private key,
as shown in Equation 1, and send it back to the DApp (Step 4 & 5).

𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 = 𝑆𝑖𝑔𝑛(𝑀, 𝑠𝑖𝑛𝑔𝑖𝑛𝑔𝐴𝑃𝐼, 𝑝𝑟𝑖_𝑘𝑒𝑦) (1)
The next phase verifies signed messages within the back-end

verifying contracts (VC). We assess all components in verification.

Definition 2. An off-chain signed message verification process
within VC consists of the following components:

1. Signature Validation: A signed message Signature to be
verified possess the original message 𝑀 and the owner’s address
(Step 6). It is vital to consider the usability of the signature by two
properties: 1) the potential number of signature usages and 2) the
time window of the signature validity.

2. Signer Verification: The VC logic must recover the signer’s
address from the provided Signature and message𝑀 by leveraging
ecrecover method (Equation 2), compare the recovered signer ad-
dress with the provided owner address (Equation 3), and consider
the aforementioned two properties. If all are successfully verified,
VC confirms the validity of the Signature and moves on to take the
requested action (Step 7).

𝑆𝑖𝑔𝑛𝑒𝑟𝐴𝑑𝑑𝑟 = 𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟 (𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒,𝑀) (2)
𝑆𝑖𝑔𝑛𝑒𝑟𝐴𝑑𝑑𝑟

?
= 𝑂𝑤𝑛𝑒𝑟𝐴𝑑𝑑𝑟 (3)

3.3 Signing-related Vulnerabilities

To ensure thoroughness, we meticulously scrutinize each element
in the definition of the signing process to identify a comprehensive
set of vulnerabilities related to signing.

Missing Secure Prefix. A secure prefix of a message, such as
“\x19Ethereum Signed Message:\n<length of message>” in
personal_sign, is crucial to the secure message construction of the
off-chain message signing process. This simple yet powerful feature
safeguards against the misuse of signatures, where attackers might
sign arbitrary data, such as transactions, and employ the signature
to impersonate the victim. By prefixing a message, the resulting
signature becomes distinctly identifiable as one associated with
Ethereum, enhancing its security. Nonetheless, this crucial security
measure is not incorporated in eth_sign, rendering it vulnerable
to attacks. Because of this, eth_sign has been disabled by default.
However, our study shows that even some top DApps still use this
method. It is also noteworthy that this feature merely narrows
down the signature’s applicability to the Ethereum blockchain and
other Ethereum Virtual Machine (EVM)-compatible blockchains.
Given that these blockchains host millions of smart contracts, the
effectiveness of this security measure is limited.

Missing or Improper DS. Domain Separator (DS) is a security
feature that limits signatures’ applicability to specific DApps. Specif-
ically, a DS includes several fields describing the signing domain,
such as the DApp’s name, version, chainId that represents the

4287

SigScope: Detecting and Understanding Off-Chain Message Signing-related Vulnerabilities ... WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

specific blockchain, and VC indicating the address of the verifier
contract. A proper DS ensures that a signature made in one domain
cannot be misused in another, providing a clear scope of validity.

Accordingly, signing methods that do not support this feature
(e.g., eth_sign, personal_sign and eth_signTypedData_v1) are in-
evitably vulnerable to signature replay attacks. Moreover, while this
feature is supported by eth_signTypedData_v3 and eth_signTyped
Data_v4, we find that simply providing the DS structure is not
enough to keep DApps from security attacks. Developers must im-
plement it properly and secure. However, as demonstrated by List-
ing 1, a popular DeFi Carbon [21] (>20K monthly active users) im-
plements an insecure DSwith the incorrect VC and missing chainId.
1 export const DEFAULT_CARBON_DOMAIN_FIELDS = {

2 name: 'Carbon ', version: '1.0.0 ',

3 verifyingContract: 'cosmos ', salt: '1',}

Listing 1: Carbon DApp Domain Separator

3.4 Verification-related Vulnerabilities

To ensure comprehensive coverage, we meticulously analyze every
element in the signature verification process to identify a compre-
hensive set of vulnerabilities.

Missing or Improper Nonce. The first feature, nonce, plays a
critical role as it limits the potential number of signature usages for
verification by VC, thereby satisfying the first property of the sig-
nature validation process. To achieve this, DApp developers must
implement nonce correctly in both the front-end and the back-
end, as shown in Listing 5 and 6. Any mistake on either side will
result in a nonce-related vulnerability. Particularly, in smart con-
tracts, developers are required to properly configure nonce within
a mapping-like data structure, establishing a connection between
unique numbers and specific addresses (Listing 5, Ln.1). The nonce
should be included within the message content and be incremented
following each verification of a signature (Listing 5, Ln.7). On the
front-end side, to ensure a signature can be verified, developers
must ensure that the nonce value on the front-end aligns with its
counterpart on the back-end (Listing 6, Ln.1-6) and incorporate
nonce within the body of the message (Listing 6, Ln.14).

Missing or Improper Deadline. The next security feature is
deadline, which defines the time window of the signature va-
lidity, limiting its validity to a determined period. This satisfies
the second property of the signature validation process. Similar to
nonce, it must be implemented correctly on both sides to avoid a
deadline-related vulnerability. First, deadline should be defined as
the current time (message construction time) plus a certain validity
period to allow certain processing and verification overhead but
filter out any further signature reuse. In the front-end, developers
need to retrieve the current time by extracting the last Block Number
or Timestamp associated with the blockchain and then add some
predefined validity period (Listing 6, Ln.8). Then, deadline must
be part of the message body in both sides (Listing 5 Ln.8 & Listing 6
Ln.15). Lastly, a validating step in the verification (Listing 5, Ln.4)
is needed to ensure the signature submission is within the deadline.

Missing or Improper Validity Check. The last security feature is
the Signature Validity Check (SVcheck). It resides in the signer
verification function in contracts and checks the signer address

validity by verifying the recovered address value using ecrecover.
To correctly implement SVcheck, the recovered address should be
a non-zero value that is equal to the signer’s address (Listing 5,
Ln.12-14). Without a proper validity check, the DApp will con-
tain a validity check-related vulnerability, which could allow an
unauthorized signer to alter the blockchain state for profit.

3.5 Proposed Attacks

Based on the aforementioned vulnerabilities, we propose various
attack scenarios that can exploit these vulnerabilities, which are
detailed in Appendix A.3. To demonstrate, We have successfully
implemented these proposed attack scenarios by deploying the
front-end of real-world vulnerable DApps ([19], [56], etc) in a local
environment and deploying the back-end VC in a testnet using
Remix [50] for testing the attacks, along with a proof of concept
(PoC) to validate their effectiveness.

4 SigScope Design and Implementation

To effectively detect off-chain message signing-related vulnerabili-
ties, we propose SigScope, an automated static analysis framework
that performs hybrid code analysis on both front-end and back-end.

4.1 System Overview

Figure 2 presents SigScope’s system overview. It takes a DApp as
input and generates a security report. The system comprises four
main phases: pre-processing, back-end code analysis, front-end
code analysis, and security inference.

Pre-processing can be split into two tasks: eliminating unreach-
able code and identifying signing methods. This phase (detailed
in Appendix A.5) focuses on pinpointing all instances of signing
and verification methods within the DApp and then sifting out
those considered unreachable. Following this, our system under-
takes interprocedural static analysis in the DApp’s back-end - its
smart contracts — to gather essential information about the veri-
fication process. Subsequently, SigScope advances to analyze the
DApp’s front-end, which usually involves HTML and JavaScript
(or TypeScript) code, aiming to extract further details pertinent to
the message signing procedure. Leveraging the insights acquired
from analyzing both the front-end and back-end code, our system
ultimately performs a security inference for the DApp, culminating
in a comprehensive security report highlighting potential security
vulnerabilities related to off-chain message signing. The following
subsections describe each phase in depth. Additionally, more imple-
mentation details of SigScope are provided in the Appendix A.6.

4.2 Back-end Code Analysis

After the pre-processing, SigScope performs the back-end code
analysis on the smart contracts to extract verification-related in-
formation from the verification process of a DApp. This phase is
responsible for analyzing three major security features - SVCheck,
deadline, and nonce. Additionally, it infers the structure of the
signed message, which is vital for front-end analysis, specifically
the positions of nonce and deadline in the signed message. This is
why we perform the back-end analysis first. The biggest challenge
of this back-end analysis is identifying nonce and deadline from
a message and further recording their positions. A simple approach
is to create a keyword list for each element and rely on program

4288

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Sajad Meisami, Hugo Dabadie, Song Li, Yuzhe Tang, & Yue Duan

Figure 2: SigScope System Overview

Algorithm 1 Back-end Code Analysis
procedure VerificationAnalysis(𝑠𝑐 , 𝑣𝑓 , 𝑟𝑐)
1: 𝑐𝑔← CallGraph(𝑠𝑐)
2: 𝐹𝑐𝑝 ← AllFuncs(𝑐𝑔, 𝑣𝑓 , 𝑟𝑐)
3: 𝑟𝑒𝑡𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟 ← ReturnValue(𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟)
4: SINK←ForwardDataFlowAnalysis(𝑠𝑐 , 𝑟𝑒𝑡𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟)
5: if ∃𝑠𝑖𝑛𝑘 ∈ SINK && 𝑠𝑖𝑛𝑘 is ConditionCheck then

6: 𝑐𝑚𝑝𝑉𝑎𝑙 ← ConditionAnalysis(𝑠𝑖𝑛𝑘 , 𝑟𝑒𝑡𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟)
7: SRC←BackwardDataFlowAnalysis(𝑠𝑐 , 𝑐𝑚𝑝𝑉𝑎𝑙)
8: if ∃𝑠𝑟𝑐 ∈ SRC && 𝑠𝑟𝑐 is Parameter(𝑟𝑐) then
9: 𝑆𝑉𝐶ℎ𝑒𝑐𝑘 ← TRUE

10: ARGS← FindAllAguments(𝐹𝑐𝑝, ‘𝐾𝑒𝑐𝑐𝑎𝑘 ′)
11: for ∀arg ∈ ARGS do
12: SRC←BackwardDataFlowAnalysis(𝑠𝑐, 𝑎𝑟𝑔)
13: if ∃𝑠𝑟𝑐 ∈ SRC && 𝑠𝑟𝑐 is ConditionCheck then
14: 𝑐𝑚𝑝𝑉𝑎𝑙 ← ConditionAnalysis(𝑠𝑟𝑐, 𝑎𝑟𝑔)
15: if 𝑐𝑚𝑝𝑉𝑎𝑙 is 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 then
16: 𝑃𝑂𝑆𝑑𝑑𝑙 ← Position(𝑎𝑟𝑔)
17: 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 ← TRUE
18: if ∃𝑠𝑟𝑐 ∈ SRC &&

𝑠𝑟𝑐 dep Parameter(𝑟𝑐) &&
𝑠𝑟𝑐 is Incremented &&
𝑠𝑟𝑐 is Non-Local Mapping Variable then

19: 𝑃𝑂𝑆𝑛𝑜𝑛𝑐𝑒 ← Position(𝑎𝑟𝑔)
20: 𝑁𝑜𝑛𝑐𝑒 ← TRUE
21: return 𝑆𝑉𝐶ℎ𝑒𝑐𝑘, 𝑃𝑂𝑆𝑑𝑑𝑙 , 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒, 𝑃𝑂𝑆𝑛𝑜𝑛𝑐𝑒 , 𝑁𝑜𝑛𝑐𝑒

end procedure

symbols, i.e., function and variable names, to identify them. For in-
stance, if a variable in a verification method is named ‘deadline’, it is
probably the deadline in the message. However, this approach will
inevitably lead to high inaccuracy since the keyword list can never
be exhaustive. Alternatively, we rely on the intrinsic characteristics
of these security features to identify them.

Algorithm 1 delineates our detailed algorithm for performing
the back-end verification analysis. Essentially, the algorithm takes
three inputs: the back-end smart contract (𝑠𝑐), the verification func-
tion identified in pre-processing (𝑣 𝑓), and the root caller of the
verification function (𝑟𝑐). The algorithm begins by generating the
call graph of 𝑠𝑐 and producing 𝐹𝑐𝑝 , which is a set of functions that
are covered in the call path from 𝑟𝑐 to 𝑣 𝑓 in 𝑠𝑐 (Ln.1-2). Then, the al-
gorithm detects the existence of 𝑆𝑉𝐶ℎ𝑒𝑐𝑘 (Ln.3-9). It first identifies
the return value of an ecrecover function 𝑟𝑒𝑡𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟 and performs
forward dataflow analysis on it to create a set of statements SINK
(Ln.3-4). If a conditional check 𝑠𝑖𝑛𝑘 exists in the set, we analyze the
condition of 𝑠𝑖𝑛𝑘 to extract the variable that is compared against
𝑟𝑒𝑡𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟 (Ln.5-6). We further perform backward dataflow analy-
sis on the variable to extract its data origin. If the data originated
from a parameter 𝑟𝑐 , which means the recovered signer of the mes-
sage is compared against part of the signed message (the original

signer), then we believe 𝑆𝑉𝐶ℎ𝑒𝑐𝑘 is enforced (Ln.7-9). Subsequently,
the algorithm starts to analyze 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and 𝑁𝑜𝑛𝑐𝑒 (Ln.10-20). It
first finds all the arguments (ARGS) of the hash function 𝐾𝑒𝑐𝑐𝑎𝑘
and performs backward dataflow analysis on each argument 𝑎𝑟𝑔 to
generate a set SRC (Ln.10-12). If a conditional check 𝑠𝑟𝑐 exists in the
set that compares 𝑎𝑟𝑔 against the current time (e.g., 𝐵𝑙𝑜𝑐𝑘𝑛𝑢𝑚𝑏𝑒𝑟
or 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝), we believe 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 exists and further record the
position of 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 , which is the position of 𝑎𝑟𝑔 in the parameter
list (Ln.13-17). Further, if there exists another 𝑠𝑟𝑐 in SRC that is
data-dependent on a parameter of 𝑟𝑐 (the nonce is signer-specific)
and is incremented for every verification, and its value comes from
a non-local mapping variable, we believe 𝑁𝑜𝑛𝑐𝑒 exists and record
its position. Eventually, the algorithm returns the existence of the
three security features and the positions of 𝑁𝑜𝑛𝑐𝑒 and 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 in
the signed message.

Algorithm 2 Front-end Code Analysis
procedure SigningProcessAnalysis(js, sm, 𝑃𝑂𝑆𝑑𝑑𝑙 , 𝑃𝑂𝑆𝑛𝑜𝑛𝑐𝑒)
1: 𝑉𝑑𝑎𝑡𝑎 ← FindDataParameter(sm)
2: SRC←BackwardDataFlowAnalysis(𝑗𝑠 ,𝑉𝑑𝑎𝑡𝑎)
3: 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ← FindMessage(SRC)
4: 𝐷𝑆 ← FindDS(SRC)
5: 𝑅𝑒𝑠𝑢𝑙𝑡𝐷𝑆 ← AnalyzeDS(𝐷𝑆)
6: if 𝑃𝑂𝑆𝑑𝑑𝑙 != ∅ then

7: 𝑉𝑑𝑑𝑙 ← LocateDDL(𝑚𝑒𝑠𝑠𝑎𝑔𝑒 , 𝑃𝑂𝑆𝑑𝑑𝑙)
8: SRC←BackwardDataFlowAnalysis(𝑗𝑠 ,𝑉𝑑𝑑𝑙)
9: if ∃𝑠𝑟𝑐 ∈ SRC && 𝑠𝑟𝑐 is CurrentTime + period then

10: 𝑅𝑒𝑠𝑢𝑙𝑡𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 ← TRUE

11: if 𝑃𝑂𝑆𝑛𝑜𝑛𝑐𝑒 != ∅ then
12: 𝑉𝑛𝑜𝑛𝑐𝑒 ← LocateNonce(𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑃𝑂𝑆𝑛𝑜𝑛𝑐𝑒)
13: SRC←BackwardDataFlowAnalysis(𝑗𝑠, 𝑉𝑛𝑜𝑛𝑐𝑒)
14: if ∃𝑠𝑟𝑐 ∈ SRC && 𝑠𝑟𝑐 is from back-end then
15: 𝑅𝑒𝑠𝑢𝑙𝑡𝑛𝑜𝑛𝑐𝑒 ← TRUE

16: return 𝑅𝑒𝑠𝑢𝑙𝑡𝐷𝑆 , 𝑅𝑒𝑠𝑢𝑙𝑡𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 , 𝑅𝑒𝑠𝑢𝑙𝑡𝑛𝑜𝑛𝑐𝑒

end procedure

4.3 Front-end Code Analysis

After analyzing the verification process in the back-end smart con-
tract, SigScope needs to extract and verify the proper implemen-
tation of security-related features in the front-end, namely 𝐷𝑆 ,
𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 , 𝑁𝑜𝑛𝑐𝑒 , and Secure Prefix. To this end, SigScope utilizes
algorithm 2 to realize this part. The algorithm takes the JavaScript
code (𝑗𝑠), the identified signing methods from pre-processing (𝑠𝑚),
and the positions of deadline and nonce from the previous phase
(𝑃𝑂𝑆𝑑𝑑𝑙 and 𝑃𝑂𝑆𝑛𝑜𝑛𝑐𝑒) and outputs the analysis results from 𝐷𝑆 ,
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and 𝑛𝑜𝑛𝑐𝑒 . Initially, it finds the message data section vari-
able 𝑉𝑑𝑎𝑡𝑎 by checking the corresponding parameter (e.g., the sec-
ond parameter in 𝑠𝑖𝑔𝑛𝑇𝑦𝑝𝑒𝑑𝐷𝑎𝑡𝑎_𝑣4) from the signing method
𝑠𝑚 (Ln.1). The algorithm performs backward dataflow analysis on

4289

SigScope: Detecting and Understanding Off-Chain Message Signing-related Vulnerabilities ... WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

𝑉𝑑𝑎𝑡𝑎 to find the message section𝑚𝑒𝑠𝑠𝑎𝑔𝑒 and the domain sepa-
rator 𝐷𝑆 since 𝑉𝑑𝑎𝑡𝑎 is data dependent on both of them (Ln.2-4).
We can then analyze 𝐷𝑆 to see if it enforces valid chainID and
verifyingContract (Ln.5). Moving on, the algorithm performs
analysis on 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 (Ln.6-10). We first utilize 𝑃𝑂𝑆𝑑𝑑𝑙 from the
back-end to locate the variable that contains deadline informa-
tion (𝑉𝑑𝑑𝑙) and perform backward dataflow analysis on it to check
whether the value comes from the current time plus a certain small
period. If so, we believe 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 is correctly implemented (Ln.7-10).
We conduct a similar analysis on 𝑛𝑜𝑛𝑐𝑒 to see if its value comes
from a call to the back-end and determine the correctness of 𝑛𝑜𝑛𝑐𝑒
(Ln.11-15). Eventually, the algorithm returns the analysis results
on 𝐷𝑆 , 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and 𝑛𝑜𝑛𝑐𝑒 . SigScope also analyzes to detect the
existence of Secure Prefix by utilizing pre-processing information
about the type of signing methods (𝑠𝑚) used. It further analyzes
the front-end to identify patterns such as “\x19Ethereum Signed
Message:\n<length>” by parsing the message. This ensures the
detection and handling of Security Prefixes in the signing process.

4.4 Security Inference

After analyzing both the front-end and back-end, SigScope pos-
sesses information regarding all utilized signing methods and the
implementations of security features. In the final phase, SigScope
consolidates this information to infer all security vulnerabilities
related to each signing method based on the defined features and
scenarios outlined as signing-related and verification-related vul-
nerabilities in Section 3. In other words, the analysis report pro-
duced by SigScope lists all used signing and verification methods
and their associated security vulnerabilities in a DApp.

5 Evaluation

In this section, we first evaluate the effectiveness and efficiency of
SigScope, then utilize it for a large-scale study to reveal the real-
world impact of off-chain message signing-related vulnerabilities.
Furthermore, we conduct a case study to demonstrate the usefulness
of SigScope using vulnerabilities in two popular DApps.

5.1 Experimental Setup

Two Datasets. To evaluate SigScope, we use DApp source code as
ground truth. The first dataset (D1) consists of the top 100 EVM-
compatible DApps from DappRadar [23], covering the most popular
applications. The second dataset (D2) includes 4,837 real-world
DApps from GitHub, selected by recent updates within the past
year and aminimum number of stars and forks to reflect community
interest and active development. This approach ensures the datasets
represent both widely used and actively maintained DApps.

5.2 Effectiveness and Efficiency

We use a dataset containing randomly selected 10% of each dataset
(494 DApps in total) and manually extract the ground truth. We
execute SigScope on these samples and manually check the re-
sults to evaluate SigScope’s effectiveness by calculating the F-1
score. Our manual inspection reveals that 159 out of 494 DApps
use off-chain message signing methods, and 118 of these DApps
contain various vulnerabilities, as defined in Section 3. SigScope
successfully detects all 159 DApps using off-chain message signing

methods and provides detailed implementation analysis for each.
Additionally, it identifies 123 associated vulnerabilities, including
issues such as the improper implementation of nonce, with only 5
cases being mislabeled (detailed in Appendix A.8). This results in a
0% false negative (FN) rate and a 4.2% false positive (FP) rate. Con-
sequently, SigScope achieves an impressive F1 score of 97.9%. We
also conclude that SigScope’s efficiency is sufficient for performing
large-scale DApp analysis, as detailed in Appendix A.9.

5.3 Real-world Study

Using SigScope, we conduct a large-scale study on the prevalence
and security of off-chain message signing in real-world DApps. We
analyze both datasets, D1 and D2, totaling 4,937 DApps. Table 2
provides detailed insights into the types and usage of these methods.
For D1, 73% of the top 100 DApps employ various off-chain message
signing methods, emphasizing their significance. These 73 DApps
collectively hold over $17B in assets and involve more than 976,630
unique active wallets (UAW). In dataset D2, SigScope identifies
1,506 DApps using off-chain message signing methods. Across both
datasets, we find 1,886 unique invocations of signing methods in
1,579 DApps, as some employ multiple signing methods. This indi-
cates that 32% (1,579 out of 4,937) of DApps actively use off-chain
message signing. (Growth trend is provided in Appendix A.10)

Table 2: Usage of Off-chain Message Signing

Signing Method

D1

Count

D2

Count

D2

Percent

eth_sign 33 804 53.3%
personal_sign 29 522 34.6%

signTypedData_V1 6 39 2.6%
signTypedData_V3 9 21 1.4%
signTypedData_V4 62 361 24%

5.4 Off-chain Message Signing Vulnerabilities

After detecting these 1886 unique calls to signing methods in a total
of 1579 unique DApps, SigScope extracts and reports security vul-
nerabilities based on the detailed algorithm mentioned in Section 4
by considering five different security features and their respective
vulnerabilities defined in section 3. Table 3 illustrates the missing
or improperly implemented signing-related vulnerabilities for each
specific off-chain message signing method category.

Table 3: Categorized Signing-related Vulnerabilities

Signing Method

Secure Prefix

Missing

DS

Missing

DS

Improper VC

DS

Improper chainId

eth_sign 837 N/A N/A N/A
personal_sign 0 551 N/A N/A

signTypedData_V1 0 45 N/A N/A
signTypedData_V3 0 0 2 1
signTypedData_V4 0 0 9 3

Total 837 596 11 4

SigScope identifies 1,203 unique vulnerable DApps. Upon man-
ual inspection, we confirm that, aside from 49 false positives (de-
tailed in Appendix A.12), SigScope accurately flags the vulnera-
bilities. This leads to the striking conclusion that approximately
73% (1,154 out of 1,579) of the detected DApps contain one or more
vulnerabilities related to off-chain message signing methods, as
illustrated in Figure 3a and Figure 3b.

After discussing the number of discovered vulnerabilities in
DApps using the off-chain message signing method, it is crucial to

4290

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Sajad Meisami, Hugo Dabadie, Song Li, Yuzhe Tang, & Yue Duan

 SMU Classification: Restricted#

837

605
560 576

62
0 6 25 18 0

0

150

300

450

600

750

900

secure prefix
related

DS related nonce related deadline related SVcheck related

TP Count FP Count

33 35 11 8 0

804

576 574 586

62

837 (53%)

611 (39%) 585 (37%)
594 (38%)

62 (4%)

0

150

300

450

600

750

900

secure prefix
related

DS related nonce related deadline related SVcheck related

D1 Count D2 Count Total Count (Total Percentage)

(a) DApps Vulnerabilities Count

 SMU Classification: Restricted#

837

605
560 576

62
0 6 25 18 0

0

150

300

450

600

750

900

secure prefix
related

DS related nonce related deadline related SVcheck related

TP Count FP Count

33 35 11 8 0

804

576 574 586

62

837 (53%)

611 (39%) 585 (37%)
594 (38%)

62 (4%)

0

150

300

450

600

750

900

secure prefix
related

DS related nonce related deadline related SVcheck related

D1 Count D2 Count Total Count (Total Percentage)

(b) True Positives & False Positives

Figure 3: Study on DApps Vulnerabilities

consider their impact on the performance and security of DApps.
Based on the attack scenarios defined in Section 3.5, we further
map the presence of off-chain message signing vulnerabilities to
the corresponding attacks that can exploit them. Figure 4 presents
statistics illustrating the likelihood of attacks on DApps, highlight-
ing the potential impact of these vulnerabilities. To demonstrate,
we successfully implement each attack scenario at least twice by
deploying the front-end of more than ten real-world vulnerable
DApps (e.g., [19], [56]) in a local environment and deploying the
back-end VC on a testnet using Remix [50] for testing the attacks.
Additionally, we provided a proof of concept (PoC) to validate their
effectiveness. As a result, a single off-chain signed message, origi-
nally intended for executing only one specific on-chain transaction,
can be abused to alter the transaction’s content or to execute the
transaction multiple times. For instance, if a DApp is vulnerable,
an attacker could use a single off-chain signed message to vote or
transfer funds multiple times, rather than just once.

N
um

be
r o

f u
ni

qu
e

D
A

pp
s

0

250

500

750

1000

Im
pers

onati
on

Cro
ss

-ch
ain

 R
ep

ly

Sam
e-c

hain
 R

ep
ly

Rep
eti

tiv
e R

ep
ly

Complet
e R

ep
ly

837

598 607 615
557

Figure 4: Possible Attacks Scenarios

5.5 Case Studies

We demonstrate SigScope’s efficacy through two case studies. The
first revealsmissing security components in a signingmethod, while
the second, detailed in Appendix A.13, highlights the incorrect
verification process in a DApp.
Case 1: Missing security measures. First, we investigate Com-
pound, an extremely popular DApp with a Total Value Locked (TVL)
value of $1B+. Listing 2 displays the front-end code of Compound,

where SigScope detects that the message consists of only two com-
ponents: proposalId and support. While our system is able to find
the presence of domain (i.e., the DS), our analysis result shows that
there is no nonce or deadline being enforced.
1 const message: VoteSignatureMessage = { proposalId

, support };

2 const types: VoteTypes = {

3 EIP712Domain: [{name:'name', type: 'string '},

4 {name:'chainId ', type: 'uint256 '},

5 {name:'verifyingContract ',type:'address '},]

6 Ballot: [{name: 'proposalId ', type: 'uint256 '},

7 {name: 'support ', type: 'uint8 ' }]};...

8 const signature = await sign(domain , primaryType ,

message , types , signer); ...}

Listing 2: Compound DApp Front-end

1 function castVoteBySig(pID , support , v, r, s) {...

2 bytes32 structHash = keccak256(BALLOT_TYPEHASH ,
pID , support);

3 bytes32 digest = keccak256("\x19\x01",
domainSeparator , structHash);

4 address signer = ecrecover(digest , v, r, s);...}

Listing 3: Compound DApp Back-end

Upon further investigation of the smart contract side of Com-
pound in Listing 3, SigScope ascertains that this DApp uses eth_sign
TypedData_v4 with a correct DS, but it fails to implement nonce
and deadline, rendering it vulnerable to repetitive replay attack.
6 Related Work & Discussion

We extend related works in Appendix A.14 by analyzing 30 works.
Appendix A.15 covers the bug disclosure process and data usage.

One limitation of SigScope is its inability to analyze closed-
source DApps and smart contracts, presenting a real-world con-
straint. However, since most impactful DApps are open-source to
foster user trust, this limitation may be less significant. Additionally,
SigScope currently supports contracts written in Solidity and lacks
support for languages like Vyper. The same applies to DApps’ front-
ends; SigScope can analyze those built with JavaScript, TypeScript,
and HTML but cannot handle obfuscated JavaScript. Fortunately,
over 97% of the top 100 DApps use these languages.

7 Conclusion

In this work, our study delves into the security aspects of off-chain
message signingmethods, identifying various vulnerabilities related
to signing and verification processes and illustrating various attack
scenarios. We introduce SigScope, a novel automated static analysis
framework capable of conducting hybrid code analysis on both the
front-end and back-end of DApps. This framework allows for the
detection and analysis of off-chain message signing methods and
associated security vulnerabilities. Our evaluation of SigScope on
a large dataset of 4937 DApps, including the top 100, demonstrates
its effectiveness in identifying DApps with vulnerabilities related
to off-chain message signing.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their constructive
comments. This work was partially supported by the National Sci-
ence Foundation under grant No. 2245627 and Singapore Ministry
of Education AcRF Tier 1 22-SIS-SMU-089. Yuzhe Tang was partially
supported by two Ethereum Foundation academic grants.

4291

SigScope: Detecting and Understanding Off-Chain Message Signing-related Vulnerabilities ... WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

References

[1] [n. d.]. IPFS is the Distributed Web. https://ipfs.io/.
[2] 2016. ERC-191: Signed Data Standard. https://eips.ethereum.org/EIPS/eip-191.
[3] 2017. EIP-712: Typed structured data hashing and signing. https://eips.ethereum.

org/EIPS/eip-712.
[4] 2024. DApp Ranking. https://dappradar.com/rankings/protocol/ethereum.
[5] 2024. Elliptic Curve Digital Signature Algorithm. https://en.bitcoin.it/wiki/

Elliptic_Curve_Digital_Signature_Algorithm.
[6] 2024. Meta Transactions. https://docs.web3j.io/4.10.0/use_cases/meta_

transaction/.
[7] 2024. State Channels. https://ethereum.org/developers/docs/scaling/state-

channels/.
[8] Retrieved Oct, 2024. Account abstraction on ethereum.org. https://ethereum.org/

en/roadmap/account-abstraction/.
[9] Retrieved Oct, 2024. Geth: the Go Client for Ethereum. https://www.ethereum.

org/cli#geth.
[10] Retrieved Oct, 2024. How to Build a Gasless Dapp. https://metamask.io/news/

developers/how-to-build-gasless-dapps/.
[11] Retrieved Oct, 2024. Mastodon: Social networking that’s not for sale. https:

//joinmastodon.org/.
[12] Retrieved Oct, 2024. OP mainnet ETH blockchains. https://optimistic.etherscan.

io/.
[13] Retrieved Oct, 2024. Scroll: the Geth fork. https://github.com/scroll-tech/go-

ethereum/tree/scroll-v5.5.17.
[14] Retrieved Oct, 2024. ZKsync Era: A ZK Rollup For Scaling Ethereum. https:

//github.com/matter-labs/zksync-era.
[15] William E Bodell III, Sajad Meisami, and Yue Duan. 2023. Proxy hunting: Un-

derstanding and characterizing proxy-based upgradeable smart contracts in
blockchains. In 32nd USENIX Security Symposium (USENIX Security 23). 1829–
1846.

[16] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher Kruegel, and
Giovanni Vigna. 2022. Sailfish: Vetting smart contract state-inconsistency bugs in
seconds. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 161–178.

[17] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2021. SMARTIAN: Enhancing smart contract fuzzingwith static and
dynamic data-flow analyses. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 227–239.

[18] Codeql. 2018. Codeql,the code analysis engine. https://github.com/github/codeql.
[19] Compound. 2024. Compound.Finance. https://compound.finance/.
[20] ConsenSys. 2022. Mythril: security analysis tool for EVM bytecode. https:

//github.com/ConsenSys/mythril/.
[21] Carbon DApp. 2021. Carbon DApp Front-end. https://github.com/Switcheo/

carbon-js-sdk/blob/7c39e0ccfdc5518374501a3f2243ea11c8997c92/src/constant/
eip712.ts#L101C1-L106C2.

[22] DappRadar. 2024. Dapp Industry Report 2023. https://dappradar.com/blog/dapp-
industry-\protect\penalty-\@Mreport-2023-defi-nft-web3-games.

[23] DappRadar. 2024. Top DApps ranking. https://dappradar.com/rankings/protocol/
ethereum?sort=totalBalanceInFiat&order=desc.

[24] Saumya K Debray, William Evans, Robert Muth, and Bjorn De Sutter. 2000.
Compiler techniques for code compaction. ACM Transactions on Programming
languages and Systems (TOPLAS) 22, 2 (2000), 378–415.

[25] Yue Duan, Xin Zhao, Yu Pan, Shucheng Li, Minghao Li, Fengyuan Xu, and Mu
Zhang. 2022. Towards Automated Safety Vetting of Smart Contracts in Decen-
tralized Applications.. In Proceedings of the 29nd ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM.

[26] Ethereum. 2018. Ethereum Provider JavaScript API. https://eips.ethereum.org/
EIPS/eip-1193.

[27] Ethereum. 2022. https://ethereum.org/en/.
[28] Etherscan. 2022. Real-world Transaction Example to trans-

fer NFTs. https://etherscan.io/tx/0xee038a31ab6e3f06bd747a\
b9dd0c3abafa48a51e969bcb666ecd3f22ff989589.

[29] Yong Fang, Cheng Huang, Yu Su, and Yaoyao Qiu. 2020. Detecting malicious
JavaScript code based on semantic analysis. Computers & Security 93 (2020),
101764.

[30] Christof Ferreira Torres, Antonio Ken Iannillo, and Arthur Gervais. 2021. CON-
FUZZIUS: A Data Dependency-Aware Hybrid Fuzzer for Smart Contracts. In
European Symposium on Security and Privacy, Vienna 7-11 September 2021.

[31] Joel Frank, Cornelius Aschermann, and Thorsten Holz. 2020. ETHBMC:
A Bounded Model Checker for Smart Contracts. In 29th USENIX Security
Symposium (USENIX Security 20). 2757–2774.

[32] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,
and Yannis Smaragdakis. 2018. Madmax: Surviving out-of-gas conditions in
ethereum smart contracts. Proceedings of the ACM on Programming Languages
2, OOPSLA (2018), 1–27.

[33] Salvatore Guarnieri and V Benjamin Livshits. 2009. GATEKEEPER: Mostly Static
Enforcement of Security and Reliability Policies for JavaScript Code.. In USENIX
Security Symposium, Vol. 10. 78–85.

[34] Bo Jiang, Ye Liu, and Wing Kwong Chan. 2018. Contractfuzzer: Fuzzing smart
contracts for vulnerability detection. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 259–269.

[35] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus:
analyzing safety of smart contracts.. In Ndss. 1–12.

[36] Mingqing Kang, Yichao Xu, Song Li, Rigel Gjomemo, Jianwei Hou, VN Venkatakr-
ishnan, and Yinzhi Cao. 2023. Scaling JavaScript Abstract Interpretation to
Detect and Exploit Node. js Taint-style Vulnerability. In 2023 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, 1059–1076.

[37] Zifeng Kang, Song Li, and Yinzhi Cao. 2022. Probe the proto:Measuring client-side
prototype pollution vulnerabilities of one million real-world websites. Network
and Distributed System Security Symposium (NDSS 2022).

[38] Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A static
analysis platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT
international symposium on Foundations of Software Engineering. 121–132.

[39] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill
Roscoe. 2018. Reguard: finding reentrancy bugs in smart contracts. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion). IEEE, 65–68.

[40] looksrare. 2024. Looksrare NFT marketplace. https://looksrare.org/.
[41] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. 254–269.

[42] MetaMask. 2024. A cryptowallet & gateway to blockchain apps. https://metamask.
io/.

[43] Zahra Motaqy, Mohamed E. Najd, and Ghada Almashaqbeh. 2024. chainBoost: A
Secure Performance Booster for Blockchain-based Resource Markets. In 9th IEEE
European Symposium on Security and Privacy, EuroS&P 2024, Vienna, Austria,
July 8-12, 2024. IEEE, 268–292. https://doi.org/10.1109/EUROSP60621.2024.00022

[44] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. http:
//www.bitcoin.org/bitcoin.pdf.

[45] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang TranMinh. 2020. sfuzz:
An efficient adaptive fuzzer for solidity smart contracts. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. 778–788.

[46] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings
of the 34th annual computer security applications conference. 653–663.

[47] Trail of Bits. 2024. Manticore: symbolic execution tool for smart contract. https:
//github.com/trailofbits/manticore/.

[48] OpenSea. 2024. OpenSea NFT marketplace. https://opensea.io/.
[49] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and

Martin Vechev. 2020. Verx: Safety verification of smart contracts. In 2020 IEEE
symposium on security and privacy (SP). IEEE, 1661–1677.

[50] Remix Project. 2024. Remix IDE. https://remix-project.org.
[51] Yos Riady. 2019. Signing and Verifying Ethereum Signatures. https:

//www.codementor.io/@yosriady/\protect\penalty-\@Msigning-and-verifying-
ethereum-\protect\penalty-\@Msignatures-vhe8ro3h6.

[52] Slither. 2024. Slither, the Solidity source analyzer. https://github.com/crytic/
slither/.

[53] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2020. VeriSmart:
A highly precise safety verifier for Ethereum smart contracts. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 1678–1694.

[54] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil Dillig.
2021. SmartPulse: automated checking of temporal properties in smart contracts.
In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 555–571.

[55] Kwangwon Sun and Sukyoung Ryu. 2017. Analysis of JavaScript programs:
Challenges and research trends. ACM Computing Surveys (CSUR) 50, 4 (2017),
1–34.

[56] Synthetix. 2024. Synthetix: Derivatives Liquidity Protocol. https://synthetix.io.
[57] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,

Evgeny Marchenko, and Yaroslav Alexandrov. 2018. Smartcheck: Static analysis
of ethereum smart contracts. In Proceedings of the 1st International Workshop
on Emerging Trends in Software Engineering for Blockchain. 9–16.

[58] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting
for integer bugs in ethereum smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference. 664–676.

[59] Omer Tripp, Pietro Ferrara, and Marco Pistoia. 2014. Hybrid security analysis of
web javascript code via dynamic partial evaluation. In Proceedings of the 2014
International Symposium on Software Testing and Analysis. 49–59.

[60] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 67–82.

[61] Uniswap. 2024. Uniswap Protocol. https://uniswap.org/.
[62] Yibo Wang, Kai Li, Yuzhe Tang, Jiaqi Chen, Qi Zhang, Xiapu Luo, and Ting Chen.

2023. Towards Saving Blockchain Fees via Secure and Cost-Effective Batching of
Smart-Contract Invocations. IEEE Trans. Software Eng. 49, 4 (2023), 2980–2995.

4292

https://ipfs.io/
https://eips.ethereum.org/EIPS/eip-191
https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712
https://dappradar.com/rankings/protocol/ethereum
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://docs.web3j.io/4.10.0/use_cases/meta_transaction/
https://docs.web3j.io/4.10.0/use_cases/meta_transaction/
https://ethereum.org/developers/docs/scaling/state-channels/
https://ethereum.org/developers/docs/scaling/state-channels/
https://ethereum.org/en/roadmap/account-abstraction/
https://ethereum.org/en/roadmap/account-abstraction/
https://www.ethereum.org/cli#geth
https://www.ethereum.org/cli#geth
https://metamask.io/news/developers/how-to-build-gasless-dapps/
https://metamask.io/news/developers/how-to-build-gasless-dapps/
https://joinmastodon.org/
https://joinmastodon.org/
https://optimistic.etherscan.io/
https://optimistic.etherscan.io/
https://github.com/scroll-tech/go-ethereum/tree/scroll-v5.5.17
https://github.com/scroll-tech/go-ethereum/tree/scroll-v5.5.17
https://github.com/matter-labs/zksync-era
https://github.com/matter-labs/zksync-era
https://github.com/github/codeql
https://compound.finance/
https://github.com/ConsenSys/mythril/
https://github.com/ConsenSys/mythril/
https://github.com/Switcheo/carbon-js-sdk/blob/7c39e0ccfdc5518374501a3f2243ea11c8997c92/src/constant/eip712.ts##L101C1-L106C2
https://github.com/Switcheo/carbon-js-sdk/blob/7c39e0ccfdc5518374501a3f2243ea11c8997c92/src/constant/eip712.ts##L101C1-L106C2
https://github.com/Switcheo/carbon-js-sdk/blob/7c39e0ccfdc5518374501a3f2243ea11c8997c92/src/constant/eip712.ts##L101C1-L106C2
https://dappradar.com/blog/dapp-industry-\protect \penalty -\@M report-2023-defi-nft-web3-games
https://dappradar.com/blog/dapp-industry-\protect \penalty -\@M report-2023-defi-nft-web3-games
https://dappradar.com/rankings/protocol/ethereum?sort=totalBalanceInFiat&order=desc
https://dappradar.com/rankings/protocol/ethereum?sort=totalBalanceInFiat&order=desc
https://eips.ethereum.org/EIPS/eip-1193
https://eips.ethereum.org/EIPS/eip-1193
https://ethereum.org/en/
https://etherscan.io/tx/0xee038a31ab6e3f06bd747a\b9dd0c3abafa48a51e969bcb666ecd3f22ff989589
https://etherscan.io/tx/0xee038a31ab6e3f06bd747a\b9dd0c3abafa48a51e969bcb666ecd3f22ff989589
https://looksrare.org/
https://metamask.io/
https://metamask.io/
https://doi.org/10.1109/EUROSP60621.2024.00022
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/trailofbits/manticore/
https://github.com/trailofbits/manticore/
https://opensea.io/
https://remix-project.org
https://www.codementor.io/@yosriady/\protect \penalty -\@M signing-and-verifying-ethereum-\protect \penalty -\@M signatures-vhe8ro3h6
https://www.codementor.io/@yosriady/\protect \penalty -\@M signing-and-verifying-ethereum-\protect \penalty -\@M signatures-vhe8ro3h6
https://www.codementor.io/@yosriady/\protect \penalty -\@M signing-and-verifying-ethereum-\protect \penalty -\@M signatures-vhe8ro3h6
https://github.com/crytic/slither/
https://github.com/crytic/slither/
https://synthetix.io
https://uniswap.org/

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Sajad Meisami, Hugo Dabadie, Song Li, Yuzhe Tang, & Yue Duan

https://doi.org/10.1109/TSE.2023.3237123
[63] Yibo Wang, Qi Zhang, Kai Li, Yuzhe Tang, Jiaqi Chen, Xiapu Luo, and Ting Chen.

2021. iBatch: saving Ethereum fees via secure and cost-effective batching of
smart-contract invocations. In ESEC/FSE ’21: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios
Gousios, Marsha Chechik, and Massimiliano Di Penta (Eds.). ACM, 566–577.
https://doi.org/10.1145/3468264.3468568

[64] Valentin Wüstholz and Maria Christakis. 2020. Harvey: A greybox fuzzer for
smart contracts. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1398–1409.

[65] Valentin Wüstholz and Maria Christakis. 2020. Targeted greybox fuzzing with
static lookahead analysis. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 789–800.

[66] Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and Tianyong Peng.
2020. Cross-contract static analysis for detecting practical reentrancy vulnera-
bilities in smart contracts. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 1029–1040.

[67] Yinxing Xue, Jiaming Ye, Wei Zhang, Jun Sun, Lei Ma, Haijun Wang, and Jianjun
Zhao. 2022. xFuzz: Machine Learning Guided Cross-Contract Fuzzing. IEEE
Transactions on Dependable and Secure Computing (2022).

[68] Mingxi Ye, Yuhong Nan, Zibin Zheng, Dongpeng Wu, and Huizhong Li. 2023.
Detecting state inconsistency bugs in dapps via on-chain transaction replay and
fuzzing. In Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis. 298–309.

[69] Jianjia Yu, Song Li, Junmin Zhu, and Yinzhi Cao. 2023. CoCo: Efficient Browser
Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract In-
terpretation. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. 2441–2455.

[70] Jiashuo Zhang, Yiming Shen, Jiachi Chen, Jianzhong Su, Yanlin Wang, Ting Chen,
Jianbo Gao, and Zhong Chen. 2024. Demystifying and Detecting Cryptographic
Defects in Ethereum Smart Contracts. In IEEE/ACM International Conference
on Software Engineering.

[71] Wuqi Zhang, Lili Wei, Shuqing Li, Yepang Liu, and Shing-Chi Cheung. 2021.
DHarcher: Detecting on-chain-off-chain synchronization bugs in decentral-
ized applications. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 553–565.

[72] Zibin Zheng, Jianzhong Su, Jiachi Chen, David Lo, Zhijie Zhong, and Mingxi Ye.
2023. DAppSCAN: Building Large-Scale Datasets for Smart Contract Weaknesses
in DApp Projects. arXiv preprint arXiv:2305.08456 (2023).

A Appendix

This is the Appendix for SigScope: Detecting and Understanding
Off-Chain Message Signing-related Vulnerabilities in Decentralized
Applications.

A.1 Blockchains, Smart Contracts, and DApps

Blockchain technology, introduced in 2008 [44], is a secure and de-
centralized ledger system that operates over a peer-to-peer network.
This ledger comprises a series of blocks that resist modification and
uphold the principle of non-repudiation. Each block holds a collec-
tion of transaction data and relevant state information, including
the time of creation, transaction hash, preceding block, and more.

Originally, blockchain technology was primarily employed to
record cryptocurrency transactions. Yet, it was not long before the
exploration of additional applications began. Ethereum [27], notable
as one of the leading mainstream blockchains, was the pioneer in
allowing the creation of smart contracts, which are essentially pro-
grams written in high-level programming languages (e.g., Solidity,
Vyper) and executed on blockchains. This innovation allows users
to establish their own rules for ownership, transaction structures,
and the state transition. Smart contracts are now a key driver in
transforming various industries, such as NFT marketplaces [40, 48]
and decentralized finance (DeFi) [19, 61].

A decentralized application, a.k.a. DApp, is structured with a
front-end for user interaction and a back-end smart contract. The
front-end not only provides the user interface but also includes
JavaScript code for communication with other elements, such as the
back-end and cryptocurrency wallets. The back-end smart contract,
situated on a blockchain, receives user inputs through the front-
end and processes function calls, which are effectively blockchain
transactions. These function executions lead to modifications in
the blockchain’s stored data. Due to the inherent properties of
blockchain, smart contracts are immutable post-deployment, assur-
ing robust security since not even the developers can alter the code.
This immutable nature has significantly contributed to the growth
of DApps, with 2023 witnessing the development of 3,000 DApps
and daily unique active wallets (UAW) of 4.2M [22].

A.2 eth_signTypedData Example

Here is an illustrative code snippet from the UniswapV2 front-
end (message construction & signing) and back-end (signature
verification).

1 gatherPermitSignature: async function
gatherPermitSignature () {...

2 const message = ...

3
4 const domain = permitInfo.version

5 ... {name: permitInfo.name ,

6 version: permitInfo.version ,

7 verifyingContract: tokenAddress ,

8 chainId ,}...

9
10 const data = JSON.stringify ({types: {...,

11 domain ,

12 primaryType: 'Permit ',

13 message ,})

14
15 return provider.send('eth_signTypedData_v4 ', [

account , data])...

Listing 4: UniswapV2 Front-end Message Signing

1 mapping(address => uint) public ns;

2 function permit (..., v, r, s) external {

3 require(deadline >= block.timestamp , 'UniswapV2:

EXPIRED ');

4 ...

5 bytes32 digest = keccak256(abi.encodePacked
6 ('\x19\x01',DOMAIN_SEPARATOR ,keccak256
7 (abi.encode (..., value , ns[owner]++,

deadline))));

8
9 address recoveredAddress =

10 ecrecover(digest , v, r, s);

11
12 require(recoveredAddress != address (0) &&

13 recoveredAddress == owner ,

14 'UniswapV2: INVALID_SIGNATURE ');

15
16 _approve(owner , spender , value);}}

Listing 5: UniswapV2 Back-end Signature Verification

4293

https://doi.org/10.1109/TSE.2023.3237123
https://doi.org/10.1145/3468264.3468568

SigScope: Detecting and Understanding Off-Chain Message Signing-related Vulnerabilities ... WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

1 const NN = tokenNonceState.result ?.[0]?. toNumber ()

2 if (tokenNonceState.loading || typeof NN !== '

number ')

3 return {

4 state: UseERC20PermitState.LOADING ,

5 signatureData: null ,
6 gatherPermitSignature: null ,}
7
8 const signatureDeadline = transactionDeadline.

toNumber () + PERMIT_VALIDITY_BUFFER

9
10 const message = ...{

11 owner: account ,

12 spender ,

13 value ,

14 nonce: NN,

15 deadline: signatureDeadline ,}

Listing 6: UniswapV2 Front-end Message Construction

A.3 Details of the Proposed Attacks

A.3.1 Impersonation Attack. This attack is associated with the
missing secure prefix and directly exploits eth_signwith three steps.
First, the attacker carefully constructs a tailored desired transaction
(e.g., transfer funds from the victim user’s wallet to the attacker’s
desired wallet) as shown in Listing 7. Note that to execute a trans-
action, the attacker only needs to sign the hash of the transaction
content using the victim’s private key. The attacker then hashes
the transaction content using a specific hash function, normally
Keccak-256. The generated hash value is ready to be signed by the
victim user.
1 TX= {

2 from:0 x3E0DeFb880cd8e163baD68ABe66437f99A7A8A74

3 to: 0xa2c0946aD444DCCf990394C5cBe019a858A945bD ,

4 gas: "0x1312d00",

5 gasPrice: "0x12ff2ba729",

6 maxFeePerGas: "0x29bc1f157c",

7 nonce: "0x81",

8 input: "0x8a10f9ce00 ..., ...}

9 hash= "0xee038a31ab6e3f06bd747ab9dd0c3abafa48

10 a51e969bcb666ecd3f22ff989589"

Listing 7: Real-world Attack Transferring NFTs [28]

Second, the attacker aims to entice the user into starting a signa-
ture challenge and persuade them to sign the message, which is, in
this case, a transaction hash. Upon acquiring the user’s signature
on the desired transaction hash, in the last step, the attacker can
submit this signed transaction to a blockchain network and wait
for the transaction to execute, which will trigger the unauthorized
token transfer without any necessary on-chain action by the victim.

This exploitation relies on the fact that a transaction’s meta-
data comprises 66 hexadecimal with no secure prefix, including the
‘0x’ prefix generated through Keccak256 calculation, obscuring its
precise meaning from users. Consequently, users may unwittingly
consent to the transaction, effectively granting access to their pend-
ing authorization. An obscured signature request shown in Figure 5
illustrates this attack scheme, where the signer remains unaware
of the exact message content they are validating.

A.3.2 Replay Attack. Replay attack exploits the improper or miss-
ing security features in the signing and verification processes to
abuse a signature and subsequently replay it with malicious inten-
tions. For instance, if a user sends a signed message to a DApp that

0xee038a31ab6e3f06bd747ab9dd0c3abafa48a51e
969bcb666ecd3f22ff989589

Figure 5: Blind Signature Challenge: Listing 7 Hash

contains a contract M to perform the verification, an attacker can
steal the signature from a legitimate DApp and replay the same
signature to another contract N without proper authorization.

We break down the replay attack into four types based on dif-
ferent scenarios. Assuming the user signs a message authorizing a
transfer of 10 tokens associated with contract M to a desired wallet,
the attacker can perform an attack and obtain the signature, leading
to four possible scenarios.

Figure 6: Type 1 Replay Attack

Type 1: Cross-chain Replay. The signature can be used to call
contract M and withdraw 10 associated tokens from the user’s
wallet. However, if the signature does not contain a DS or has a
DS containing an incorrect implementation of the chainId, the
attacker may use that same signature to call another contract N
instead of contract M. In this case, contract N can be located on a
different blockchain. Consequently, the attacker could withdraw 10
tokens N from the user’s wallet, as illustrated in Figure 6. Tokens
N are different and could be more valuable than the tokens M.

4294

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Sajad Meisami, Hugo Dabadie, Song Li, Yuzhe Tang, & Yue Duan

Figure 7: Type 2 Replay Attack

Type 2: Same-chain Replay. The scenario for this type of Replay
attack is the same as type 1 except that both contract M and con-
tract N are located on the same blockchain, meaning that token M
and token N are native to the same blockchain as illustrated in Fig-
ure 7. When the signature is missing DS or contains an incorrectly
implemented VC, it opens up a loophole to this type of attack.

Figure 8: Type 3 Replay Attack

Type 3: Repetitive Replay. In this scenario, the attacker possesses
the signature and employs it to invoke contract M. However, if
the signature is missing or has improper nonce and deadline,
the attacker can leverage the same signature and make repetitive
calls to contract M instead of just once. This repetitive invocation
ultimately leads to the withdrawal of all tokens associated with
contract M from the user’s wallet. As depicted in Figure 8, if the
user has 100 tokens linked to contract M and has only signed a
message to transfer 10, the attacker can exploit the signature to call
contract M ten times, withdrawing all 100 tokens from the user’s
wallet.

Type 4: Complete Replay. This scenario combines elements from
the previous scenarios, allowing the attacker to invoke multiple
contracts (e.g., both contracts M and N) repeatedly using the same

signature. This situation arises when all three security features,
namely DS (VC part), nonce, and deadline, are either missed or
improperly implemented in the signature. The attacker can system-
atically withdraw all distinct tokens associated with those contracts
from the user’s wallet. This is more severe than the previous types,
as it has the potential to rapidly deplete the user’s wallet using a sin-
gle signature. More explanation is provided in the Appendix A.11.

A.4 System overview

SigScope analyzes both the front-end and back-end source code to
identify security issues and aggregates them to generate compre-
hensive results showcasing DApps signing-related security issues.
It produces analysis results pertaining to security inference and
reporting. During the pre-processing step, SigScope determines
whether the DApp utilizes off-chain signing and verification meth-
ods. If affirmative, the analysis core is activated to extract signing
and verification security-related features, characterizing the sign-
ing and verification process. Subsequently, the security inference
analyzer vets the DApp, uncovering potential security issues.

To this end, SigScope performs static intra- and inter-procedural
context-sensitive, flow-insensitive analyses of the DApp atop state-
of-the-art analysis frameworks CodeQL [18] and Slither [52]. Cod-
eQL examines the front-end code of DApps, such as JavaScript, by
representing the codebase as a structured database. It then employs
the CodeQL query language to interrogate this database, enabling
developers to explore code properties and patterns. Slither is a So-
lidity smart contract static analysis framework that runs a suite of
detectors and prints information about contract logic details and
code analysis. Slither transforms the contract code into a static
assignment intermediate representation (IR) named SlithIR, which
facilitates implementation while preserving semantic information.

As depicted in Figure 2, SigScope functions as an analysis frame-
work comprising an analysis core and four major tools. SigScope
receives two inputs: the smart contract source code and the front-
end source code, which includes JavaScript, Typescript, and HTML
files.

A.5 Pre-processing

To determine whether a DApp is entangled with off-chain message
signing-related security vulnerabilities, SigScope initiates an anal-
ysis to identify the presence of message signing and verification
methods. However, to ensure the effectiveness of the identification,
it is essential to eliminate unreachable code regions, as a DApp’s
code may contain some instances of signing methods that can never
be invoked. Unreachable code elimination thus ensures the effec-
tiveness of SigScope’s detection capability.

Signing and Verification Method Identification. The first task
in the pre-processing phase is to identify all the signing and verifi-
cation methods in a given DApp to facilitate further vulnerability
detection. The easiest way is to scan over the whole code base in
both the front-end and the back-end, searching for some API names
(e.g., personal_sign and ecrecover). However, this approach will re-
sult in high false positives since it includes keywords in comments.
To avoid this, SigScope generates control-flow graphs for both sides
and iterates over all the basic blocks to search for external function

4295

SigScope: Detecting and Understanding Off-Chain Message Signing-related Vulnerabilities ... WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

calls to these APIs and consider the caller functions of APIs as the
signing and verification methods in the DApp.

Unreachable Code Elimination. After identifying all the signing
and verification methods, SigScope aims to eliminate the unreach-
able ones to guarantee the identified methods are indeed invokable.
Traditionally, researchers have employed static inter-procedural
constant propagation to identify unreachable code in C programs,
focusing on locating conditional branches that could never be exe-
cuted [24]. However, this top-down strategy is not ideally suited for
us for two reasons: 1) it is time-consuming since it aims to identify
all unreachable code segments across the entire program, while our
objective is specifically to isolate unreachable signing and verifica-
tion methods; 2) unlike C programs, Solidity and JavaScript often
feature multiple points of entry, complicating the application of
this method. In response, we adopt a bottom-up methodology. Our
system generates inter-procedural control-flow graphs (ICFGs) for
both the front-end and back-end, extracts all the guarding condi-
tions and the root caller of each signing and verification method
(i.e., an entry point that eventually invokes the method) by search-
ing backward from each identified signing and verification method,
and performs backward dataflow analysis on the variables in the
guarding conditions to examine whether the condition is satisfi-
able. We deem one method as reachable if it is not guarded by an
unsatisfiable condition and its root caller exists. For the JavaScript
code, we need to ensure that the root caller is further called by the
HTML code.

A.6 Back-end Code Analysis

After the pre-processing step, SigScope performs back-end code
analysis on the smart contracts on top of Slither to extract verification-
related information from the verification process of a DApp. This
phase is responsible for analyzing three major security features:
SVCheck, deadline, and nonce. Additionally, it infers the structure
of the signed message, which is vital for front-end analysis, specifi-
cally identifying the positions of nonce and deadline in the signed
message. This is why we perform the back-end analysis first.

while Slither handles basic analysis on a static assignment inter-
mediate representation (IR) named SlithIR, it does not specifically
address the identification of nonce and deadline from a message
and accurately record their positions. Therefore, we need to im-
plement custom callgraph, and forward and backward dataflow
analysis techniques.

A simple approach is to create a keyword list for each element
and rely on program symbols, such as function and variable names,
to identify them. For instance, if a variable in a verification method
is named "deadline", it is likely to be the deadline in the mes-
sage. However, this approach can lead to high inaccuracy since
the keyword list can never be exhaustive. Instead, we rely on the
intrinsic characteristics of these security features to identify them.
Algorithm 1 outlines our comprehensive approach for conducting
back-end verification analysis. The algorithm is designed to accept
three key inputs: the back-end smart contract (𝑠𝑐), the verification
function identified during pre-processing (𝑣 𝑓), and the root caller
function of the verification process (𝑟𝑐).

To this end, SigScope begins by generating the call graph of 𝑠𝑐
and producing 𝐹𝑐𝑝 , which is a set of functions that are covered in

the call path from 𝑟𝑐 to 𝑣 𝑓 in 𝑠𝑐 Then, the algorithm detects the
existence of 𝑆𝑉𝐶ℎ𝑒𝑐𝑘 (Ln.3-9). It first identifies the return value of
an ecrecover function 𝑟𝑒𝑡𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟 and performs forward dataflow
analysis on it to create a set of statements SINK (Ln.3-4). If a condi-
tional check 𝑠𝑖𝑛𝑘 exists in the set, we analyze the condition of 𝑠𝑖𝑛𝑘
to extract the variable that is compared against 𝑟𝑒𝑡𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟 (Ln.5-6).
We further perform backward dataflow analysis on the variable
to extract its data origin. If the data originated from a parameter
𝑟𝑐 , which means the recovered signer of the message is compared
against part of the signed message (the original signer), then we
believe 𝑆𝑉𝐶ℎ𝑒𝑐𝑘 is enforced (Ln.7-9).

To achieve this, SigScope begins by generating the call graph
of𝑠𝑐 and deriving 𝐹𝑐𝑝 , which encompasses all functions traversed
in the call path from 𝑟𝑐 to 𝑣 𝑓 within 𝑠𝑐 . This step ensures that
the analysis focuses specifically on the relevant portions of the
smart contract where verification operations occur. Subsequently,
the algorithm proceeds to verify the presence of 𝑆𝑉𝐶ℎ𝑒𝑐𝑘 (Ln. 3-
9). It begins by capturing the return value 𝑟𝑒𝑡𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟 from an
ecrecover function call and conducts forward dataflow analysis
to compile a set of statements SINK (Ln.3-4). This set includes
potential locations in the code where the value 𝑟𝑒𝑡𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟 might
be used in conditional checks or comparisons. If a conditional check
𝑠𝑖𝑛𝑘 is identified within SINK, the algorithm further investigates
the condition associated with 𝑠𝑖𝑛𝑘 to identify the variable being
compared against 𝑟𝑒𝑡𝑒𝑐𝑟𝑒𝑐𝑜𝑣𝑒𝑟 (Ln. 5-6). This involves analyzing the
control flow to understand the context in which the comparison
occurs and the significance of the comparison result. To validate
𝑆𝑉𝐶ℎ𝑒𝑐𝑘 , the algorithm performs backward dataflow analysis on
the identified variable to trace its origin. If the variable can be
traced back to a parameter 𝑟𝑐 , indicating that the recovered signer
of the message corresponds to the original signer as intended by the
DApp’s logic, then 𝑆𝑉𝐶ℎ𝑒𝑐𝑘 is inferred to be enforced (Ln. 7-9). This
verification process ensures that the smart contract code effectively
validates the authenticity and integrity of messages signed off-chain.
By meticulously analyzing the flow of data and control within the
smart contract, SigScope provides a robust assessment of 𝑆𝑉𝐶ℎ𝑒𝑐𝑘
implementation, enhancing the security and reliability of DApps
utilizing such verification mechanisms.

Subsequently, the algorithm proceeds to analyze the 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒
and 𝑁𝑜𝑛𝑐𝑒 parameters in a comprehensive manner (Ln.10-20). It
begins by identifying all the arguments (ARGS) of the hash func-
tion 𝐾𝑒𝑐𝑐𝑎𝑘 and then conducts a backward dataflow analysis on
each argument 𝑎𝑟𝑔 to generate a set SRC (Ln.10-12). This step
is crucial as it traces the origins and dependencies of each argu-
ment, providing insight into their roles and interactions within the
function. If a conditional check 𝑠𝑟𝑐 is found within the set that com-
pares 𝑎𝑟𝑔 against the current time indicators (such as 𝐵𝑙𝑜𝑐𝑘𝑛𝑢𝑚𝑏𝑒𝑟
or 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝), the algorithm infers that a 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 parameter is
present. It then records the position of this ‘𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒‘ parameter,
which corresponds to the position of 𝑎𝑟𝑔 within the parameter list
(Ln.13-17). This identification process is vital for understanding
time-sensitive operations within the contract.

Furthermore, if another 𝑠𝑟𝑐 in SRC is determined to be data-
dependent on a specific parameter 𝑟𝑐 (where the nonce is unique to
each signer), and this parameter is incremented with each verifica-
tion while its value originates from a non-local mapping variable,

4296

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Sajad Meisami, Hugo Dabadie, Song Li, Yuzhe Tang, & Yue Duan

the algorithm deduces that a 𝑁𝑜𝑛𝑐𝑒 parameter is present. The posi-
tion of the 𝑁𝑜𝑛𝑐𝑒 is then documented. Additionally, the algorithm
may consider other contextual clues and cross-references within the
code to strengthen its deductions about the 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and 𝑁𝑜𝑛𝑐𝑒 .
By examining usage patterns, dependencies, and the broader logical
flow of the program, the algorithm enhances the accuracy and reli-
ability of its analysis. Finally, the algorithm compiles and returns a
comprehensive report detailing the existence and precise positions
of the three security features: the 𝑆𝑉𝐶ℎ𝑒𝑐𝑘 , the 𝑁𝑜𝑛𝑐𝑒 , and the
𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 .

A.7 Front-end Code Analysis

After thoroughly analyzing the verification process within the back-
end smart contract, SigScope must extract and verify the proper
implementation of security-related features in the front-end, specifi-
cally the𝐷𝑆 ,𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 , and𝑁𝑜𝑛𝑐𝑒 parameters. This ensures that the
entire system maintains the integrity and security of these critical
components across both the front-end and back-end environments.

Although CodeQL handles basic dataflow analysis by represent-
ing the codebase as a structured database and using the CodeQL
query language to interrogate this database, it does not specifi-
cally address extracting and verifying the proper implementation
of security-related features. Therefore, we must implement custom
backward data flow analysis techniques as follow.

SigScope employs algorithm 2, designed to handle this aspect of
the verification process. The algorithm takes as inputs the JavaScript
code (𝑗𝑠), the identified signing methods from pre-processing (𝑠𝑚),
and the positions of the 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and 𝑁𝑜𝑛𝑐𝑒 from the previous
phase (𝑃𝑂𝑆𝑑𝑑𝑙 and 𝑃𝑂𝑆𝑛𝑜𝑛𝑐𝑒), and it outputs the analysis results
for 𝐷𝑆 , 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 , and 𝑁𝑜𝑛𝑐𝑒 . SigScope also analyzes to detect the
existence of Security Prefix by utilizing pre-processing information
about the type of signing methods (𝑠𝑚) used. It further conducts
analysis in the front-end to identify patterns such as “\x19Ethereum
Signed Message:\n<length of message>” by parsing the message
body. This ensures the detection and proper handling of security
prefixes within the signing process.

The algorithm begins by locating the message data section vari-
able𝑉𝑑𝑎𝑡𝑎 by examining the corresponding parameter in the signing
method 𝑠𝑚 (e.g., the second parameter in 𝑠𝑖𝑔𝑛𝑇𝑦𝑝𝑒𝑑𝐷𝑎𝑡𝑎_𝑣4) (Ln.1).
It then performs backward dataflow analysis on 𝑉𝑑𝑎𝑡𝑎 to identify
the message section (𝑚𝑒𝑠𝑠𝑎𝑔𝑒) and the domain separator (‘𝐷𝑆 ‘), as
𝑉𝑑𝑎𝑡𝑎 is data-dependent on both (Ln.2-4). Subsequently, it analyzes
𝐷𝑆 to ensure it enforces a valid chainID and verifyingContract
(Ln.5).

The algorithm then focuses on the 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 parameter (Ln.6-10).
Utilizing 𝑃𝑂𝑆𝑑𝑑𝑙 from the back-end, it identifies the variable that
holds the deadline information (𝑉𝑑𝑑𝑙). Backward dataflow analysis
is conducted on ‘𝑉𝑑𝑑𝑙 ‘ to verify that the value is derived from the
current time plus a predefined small period. The analysis establishes
𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and its order position within the signature, based on its
data dependency on time (e.g., block.number or block.timestamp),
with its source coming from a function input argument. This con-
firms whether the ‘𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒‘ is correctly implemented (Ln.7-10).

A similar approach is taken for the ‘𝑁𝑜𝑛𝑐𝑒‘ parameter (Ln.11-15).
The algorithm checks whether the ‘𝑁𝑜𝑛𝑐𝑒‘ value originates from a
call to the back-end, ensuring that it is correctly implemented. This

involves verifying that the ‘𝑁𝑜𝑛𝑐𝑒‘ is incremented appropriately
and is signer-specific which means considering its data dependency
on the signer’s address.

To further extend the verification process, the algorithm might
include cross-referencing additional contextual clues within the
front-end code. This includes examining usage patterns, dependen-
cies, and the overall logical flow of the program. Such comprehen-
sive analysis strengthens the reliability of the deductions about ‘𝐷𝑆 ‘,
‘𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒‘, and ‘𝑁𝑜𝑛𝑐𝑒‘. Eventually, the algorithm compiles and re-
turns a detailed report on the analysis results for ‘𝐷𝑆‘, ‘𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒‘,
‘𝑁𝑜𝑛𝑐𝑒‘, and Secure Prefix. This report includes the value, positions,
and verification status of these parameters, providing a clear under-
standing of their implementation and ensuring that the front-end
code aligns with the security requirements established in the back-
end smart contract. This robust approach verifies the integrity and
correctness of these security features. By meticulously validating
both the front-end and back-end implementations, SigScope en-
sures a comprehensive and reliable security verification process,
safeguarding the system against potential vulnerabilities and en-
suring the integrity of critical security parameters.

A.8 FPs and FNs in Effectiveness

False Positives. Furthermore, we investigate the 5 false positive
cases to understand their root causes. Three of these cases involve
scenarios where verification procedures are defined within external
inherited smart contracts (e.g., external libraries), which increases
the complexity of the analysis. Of these, two are mislabeled as
vulnerable due to incorrect implementations of nonce, while one
is misclassified due to errors in both nonce and deadline imple-
mentations. SigScope fails to capture the complete implementation
details and security features in these cases, leading to their misla-
beling as having reported vulnerabilities. The remaining two cases
are caused by JavaScript code complexity, which leads to a failure
in the backward dataflow analysis of nonce. This failure prevents
SigScope from determining whether the nonce value originates
from a back-end call, thus hindering its ability to assess the correct-
ness of the implementation.
False Negatives. The 0% false negative rate of SigScope reflects its
robust detection accuracy, achieved through systematic back-end
and front-end analysis. In the back-end, SigScope traces nonce
and deadline through call graphs and dataflow analysis, ensuring
they originate from secure sources and are correctly enforced. In
the front-end, it tracks 𝑉𝑑𝑎𝑡𝑎 , extracts 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 and 𝐷𝑆 , and ver-
ifies chainID and verifyingContract enforcement. By correlat-
ing these checks across both layers, SigScope ensures no off-chain
signing instance is missed, confirming its effectiveness in detecting
vulnerabilities.

A.9 Efficiency

We utilize the 159 verified DApps containing off-chain message
signing to assess the runtime performance of SigScope. On average,
SigScope takes 15.63 seconds and 42.74 seconds to perform the
back-end and front-end analyses, respectively. As illustrated in
Figure 9, SigScope can process more than 82.3% (131 out of 159) of
DApps in under one minute, with a maximum processing time of
321.2 seconds. Consequently, we can conclude that the efficiency of
SigScope is high enough for performing large-scale DApps analysis.

4297

SigScope: Detecting and Understanding Off-Chain Message Signing-related Vulnerabilities ... WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Execution Time (seconds)

Pe
rc
en
ta
ge

Figure 9: CDF Diagram of SigScope Execution Time

A.10 Growth Trend of DApps

We also analyze the creation dates of the 1,579 detected DApps
to explore the growth trend of DApps utilizing off-chain message
signing. Figure 10 illustrates the increasing popularity of these
DApps over recent years, with a notable surge in deployments
around 2022. This trend highlights the rapid adoption of off-chain
message signing in the blockchain ecosystem.

Date

C
re

at
ed

 D
A

pp
s

co
un

t

0

100

200

300

400

1/17 7/17 1/18 7/18 1/19 7/19 1/20 7/20 1/21 7/21 1/22 7/22 1/23

Figure 10: DApps Using Off-chain Signing Growth Trend

A.11 Vulnerabilities & Attack Senarios

Missing Secure Prefix. As detailed earlier in Section 3, it leads to
blind signature results, where the signer remains unaware of the
exact message content they are signing. This vulnerability exposes
the workflow to impersonation, enabling attackers to fabricate and
deploy transactions that can transfer arbitrary amounts of funds
from the victim’s wallet.
Missing or Improper DS. If a DApp has a DS containing an incor-
rect implementation of the chainId, it is vulnerable to Cross-chain
Replay attacks. If it contains a DS by an incorrectly implemented VC,
it is vulnerable to Same-chain Replay attacks. If the signature does
not contain a DS, it is vulnerable to both Cross-chain Replay and
Same-chain Replay attacks. These replay scenarios enable an at-
tacker to reuse a signature, initially intended for one specific DApp,
to exploit the victim’s funds through other unauthorized DApps at
least once per DApp, regardless of whether nonce or deadline is
correctly implemented.

Missing or Improper Nonce. This vulnerability leads to a Repeti-
tive Replay, where the attacker can leverage the same signature to
make repetitive calls to the contract instead of just once, allowing
them to withdraw all tokens associated with the contract from the
user’s wallet.
Missing or Improper Deadline. By working in conjunction with
nonce, deadline can mitigate the risk of Repetitive Replay by set-
ting an expiration date for a signature. However, in Complete Re-
play, where an attacker can invoke multiple contracts repeatedly,
the role of deadline is crucial. Even correctly implemented nonce
cannot mitigate this scenario without the proper implementation
of deadline.
Missing or Improper Validity Check. Regardless of the specific
attack scenario, this vulnerability could allow an attacker to ex-
ploit it for profit, resulting in unauthorized changes to the state of
the blockchain. This undermines the security of the entire Signer
Verification phase.

A.12 False Positives

Additionally, we conduct a detailed examination of the 49 false
positive cases to uncover their underlying causes.

Out of these cases, 16 involve situations where verification proce-
dures are implemented in external inherited smart contracts, such
as external libraries. This setup introduces additional complexity
to the analysis process. Among these, nine cases are misclassified
as vulnerable due to incorrect implementations of the nonce, while
seven cases are incorrectly identified as vulnerable due to issues
with the deadline implementations. In these instances, SigScope
fails to accurately capture the complete implementation details
and security features present in the external contracts, leading to
erroneous conclusions about the existence of vulnerabilities.

The remaining 33 cases are due to front-end code complexity,
such as JavaScript, which causes failures when performing back-
ward dataflow analysis on 𝑉𝑑𝑎𝑡𝑎 , as detailed in Algorithm 2. This
analysis aims to identify the message section, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 , and the
domain separator 𝐷𝑆 but fails because 𝑉𝑑𝑎𝑡𝑎 is data-dependent on
both of these elements (Lines 2-4).

In six cases, SigScope is unable to find the implementation de-
tails of 𝐷𝑆 to determine whether it enforces a valid chainID and
verifyingContract due to the dynamic nature of JavaScript ob-
jects and asynchronous execution.

SigScope utilizes 𝑃𝑂𝑆𝑑𝑑𝑙 from the back-end to locate the variable
containing the deadline information (𝑉𝑑𝑑𝑙) and performs backward
dataflow analysis on it to check whether the value results from the
current time plus a certain small period. In eleven cases, SigScope’s
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 cannot correctly verify deadline due to failures in this
backward dataflow analysis, which stem from JavaScript’s asyn-
chronous execution, event-driven logic, and implicit variable modi-
fications.

SigScope conducts a similar analysis on nonce to determine
if its value originates from a call to the back-end and assess the
correctness of nonce. Failures in the backward dataflow analysis
of nonce prevent SigScope from determining whether the nonce
value comes from a back-end call, thereby hindering its ability to
evaluate the correctness of the implementation in sixteen cases.
These failures arise from JavaScript’s dynamic property access,
asynchronous execution, and indirect function references.

4298

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Sajad Meisami, Hugo Dabadie, Song Li, Yuzhe Tang, & Yue Duan

A.13 Case Study Detail

1 const deadline = 99999999999999;

2 const signature = await signer._signTypedData(

3 { version: "2",

4 name: "USD Coin",

5 chainId: chainID ,

6
7 verifyingContract: usdcTokenAddress ,},...

8 { owner: account ,

9 spender: teslaContract ,

10 value: ethers.utils.parseUnits(usdc.toString (),

usdcDecimals),

11 nonce: (await usdcContract ?. nonces(account))||0,

deadline , });

Listing 8: Synthetix Front-end

Case 2: Incorrect implementation of security measures. For
the second case study, we investigate Synthetix [56], a popular
DeFi ecosystem with a $668M+ TVL. Based on SigScope analysis,
this DApp utilizes eth_signTypedData_v4 with a DS, nonce, and
deadline; however, it does not implement deadline properly to
prevent replay attacks. A proper implementation of deadline in
the front-end should always be calculated as the current time (e.g.,
timestamp) plus a short time frame to eliminate the possibility of
reusing the signature after a short period. However, as shown in
Listing 8, the dealine value is assigned a large constant value
(Ln.1), making the DApp vulnerable to attacks because a signature
can now be used indefinitely.
1 function permit (...) external {

2 if (deadline < block.timestamp)

3 revert ();
4 address recoveredAddress = ecrecover(
5 keccak256("\x19\x01",DOMAIN_SEPARATOR (),
6 keccak256(
7 keccak256("Permit (...)"),
8 owner , spender , value ,

9 nonce , deadline)))), v,r,s);

10 store.nonces[owner] = nonce + 1;

11 if (recoveredAddress == address (0) ||

recoveredAddress != owner) revert ();

12 _approve(recoveredAddress , spender , value);}

Listing 9: Synthetix Back-end

A.14 Related-work Details

We categorize 30 works into three areas of security analysis: Smart
Contract Security Analysis, Front-end Security Analysis, and DApp
Security Analysis. To the best of our knowledge, no research aids
the community in comprehending and automatically identifying
the emerging off-chain message signing-related vulnerabilities in
DApps.

Smart Contract Security Analysis. Some research employs static
analysis to enhance smart contract security and efficiency. USCHUNT
[15] explores the balance between adaptability and security in up-
gradeable contracts. Madmax [32] targets vulnerabilities to prevent
execution failures, while Slither [52] and Smartcheck [57] auto-
matically detect flaws in Solidity contracts. Symbolic execution is
also used to improve security; Mythril [20] analyzes EVM bytecode,
EthBMC [31] combines symbolic execution with concrete valida-
tion, and Reguard [39] and Manticore [47] identify reentrancy and

other bugs. Smartian [17] integrates fuzzing with static and dy-
namic analysis, while Confuzzius [30] leverages data dependency
insights for fuzzing. CRYSOL [70] applies fuzzing to detect cryp-
tographic defects in contracts. ContractFuzzer [34] and Sfuzz [45]
apply fuzzing to uncover security issues.

Research highlights various formal verification methods to en-
hance smart contract security. Sailfish [16] improves state incon-
sistency detection, while VetSC.[25] extends DApp verification.
Zeus[35] and Verx [49] focus on contract safety and condition
verification. Smartpulse [54] analyzes time-based properties, Secu-
rify [60] identifies security breaches, and Verismart [53] ensures
contract safety.

Front-end Security Analysis. These studies advance JavaScript
security analysis using static and hybrid methods. Tripp et al.[59]
enhance web security by combining static and dynamic analysis.
Sun and Ryu[55] survey JavaScript analysis challenges. JSAI [38]
targets dynamic aspects for vulnerability detection, while GATE-
KEEPER [33] enforces static security policies. Fang et al.[29] use
semantic analysis to detect malicious code, and FAST[36] applies
abstract interpretation for Node.js vulnerabilities. CoCo [69] fo-
cuses on browser extension security, and PROBETHEPROTO [37]
addresses prototype pollution vulnerabilities.

DApp SecurityAnalysis.DAppScan [72] creates large-scale datasets
for detecting weaknesses in DApps’ contracts and introduces the
Smart Contract Weakness Classification Registry, including issues
like Signature Malleability and Missing Protection against Replay
Attacks. Ye et al.[68] propose methods for detecting DApp vulner-
abilities. Darcher[71] addresses challenges in synchronizing on-
chain and off-chain data in Ethereum-based DApps. Xue et al. [66]
focus on reentrancy vulnerabilities.

Our work is the first to identify and systematically investigate
off-chain message-signing vulnerabilities, which were not known
or well-defined before, nor can any existing tools detect them. Our
technical novelty stems from inventing new algorithms (i.e., Algo-
rithm 1 and 2) and designing a novel hybrid approach to detecting
new vulnerabilities effectively.

A.15 Ethical Best Practices

Bug disclosure: We identify the developers of vulnerable DApps
detected by SigScope. Using Etherscan’s ethmail service and offi-
cial contact information (e.g., DApp websites, Discord, X, GitHub),
we verify ownership and notify them of the vulnerabilities. The
developers’ responses are documented in the SigScope repository.

Use of data: The code analyzed in this work is collected from public
places, such as JavaScript from public websites and smart contracts
crawled from Ethereum blockchains. To protect vulnerable DApps,
we will mask the DApp names and other identifiable information
in the camera-ready, such as the ones in the Case Study Section 5.5,
so that they will not be attacked after paper publication.

4299

	Abstract
	1 Introduction
	2 Background & Off-chain Message Signing
	2.1 Off-chain Message Signing Workflow
	2.2 Signing Methods
	2.3 Signed Message Verification

	3 Off-chain Message Signing Security Analysis
	3.1 Threat Model
	3.2 Formal Definition
	3.3 Signing-related Vulnerabilities
	3.4 Verification-related Vulnerabilities
	3.5 Proposed Attacks

	4 SigScope Design and Implementation
	4.1 System Overview
	4.2 Back-end Code Analysis
	4.3 Front-end Code Analysis
	4.4 Security Inference

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness and Efficiency
	5.3 Real-world Study
	5.4 Off-chain Message Signing Vulnerabilities
	5.5 Case Studies

	6 Related Work & Discussion
	7 Conclusion
	References
	A Appendix
	A.1 Blockchains, Smart Contracts, and DApps
	A.2 eth_signTypedData Example
	A.3 Details of the Proposed Attacks
	A.4 System overview
	A.5 Pre-processing
	A.6 Back-end Code Analysis
	A.7 Front-end Code Analysis
	A.8 FPs and FNs in Effectiveness
	A.9 Efficiency
	A.10 Growth Trend of DApps
	A.11 Vulnerabilities & Attack Senarios
	A.12 False Positives
	A.13 Case Study Detail
	A.14 Related-work Details
	A.15 Ethical Best Practices

