SQLStateGuard: Statement-Level SQL Injection
Defense Based on Learning-Driven Middleware

Xin Liu Yuanyuan Huang” Song Lit
School of Information Science & Tianyi Wang’ The State Key Laboratory of
Engineering, Lanzhou University huangyy19@lzu.edu.cn Blockchain and Data Security,
Lanzhou, Gansu, China wangty2020@lzu.edu.cn Zhejiang University
bird@lzu.edu.cn School of Information Science & Hangzhou, Zhejiang, China
Engineering, Lanzhou University songl@zju.edu.cn
Lanzhou, Gansu, China
Weina Niu Jun Shen Qingguo Zhou
School of Computer Science and School of Computing and School of Information Science &

Engineering, University of
Electronic Science and Technology
of China
Chengdu, Sichuan, China
vinusniu@uestc.edu.cn

Information Technology,
University of Wollongong
Wollongong, New South Wales
Australia
jshen@uow.edu.au

Engineering, Lanzhou University
Lanzhou, Gansu, China
zhouqg@lzu.edu.cn

Xiaokang Zhou
Faculty of Business Data Science,
Kansai University
Suita, Osaka, Japan
zhou@kansai-u.ac.jp

ABSTRACT

SQL injection is a significant and persistent threat to web
services. Most existing protections against SQL injections
rely on traffic-level anomaly detection, which often results
in high false-positive rates and can be easily bypassed by
attackers. This paper introduces SQLStateGuard, the world’s
first middleware-driven statement-level SQL injection de-
fense approach, to address these issues. The SQLStateGuard
uses a custom SQL middleware based on the idea of Run-
time Application Self-Protection to capture raw SQL state-
ments. These statements are then analyzed by SQLSG-Net, a

“Both authors contributed equally to this research.
Corresponding authors.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SoCC 24, November 20-22, 2024, Redmond, WA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1286-9/24/11.
https://doi.org/10.1145/3698038.3698569

database-oriented detection network based on gated linear
units. If SQLSG-Net detects malicious SQL statements, the
SQL middleware will block them. Experiments show that the
detection accuracy of SQLStateGuard exceeds 99%, outper-
forming existing approaches, and it can identify the type of
a specific SQL injection. Additionally, SQLStateGuard has no
fingerprint and does not respond to SQL syntax errors, mak-
ing it more challenging for attackers to gather information.
This paper also presents a novel dataset generation process
for SQLStateGuard and shares two statement-level SQL in-
jection datasets with the research community, including over
145,000 malicious SQL statements categorized by the type of
SQL injection.

CCS CONCEPTS

« Security and privacy — Firewalls; Database activity
monitoring.

KEYWORDS

SQL Injection, Attack Detection, Deep Learning, Web Secu-
rity, Data Security

https://orcid.org/0000-0003-3685-4852
https://orcid.org/0000-0002-7465-773X
https://orcid.org/0009-0009-7248-1732
https://orcid.org/0000-0002-7961-8502
https://orcid.org/0000-0002-3235-3463
https://orcid.org/0000-0002-9403-7140
https://orcid.org/0000-0001-8054-5446
https://orcid.org/0000-0003-3488-4679
https://doi.org/10.1145/3698038.3698569

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

ACM Reference Format:

Xin Liu, Yuanyuan Huang, Tianyi Wang, Song Li, Weina Niu, Jun
Shen, Qingguo Zhou, and Xiaokang Zhou. 2024. SQLStateGuard:
Statement-Level SQL Injection Defense Based on Learning-Driven
Middleware. In ACM Symposium on Cloud Computing (SoCC 24),
November 20-22, 2024, Redmond, WA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3698038.3698569

1 INTRODUCTION

SQL injection is a technique attackers use to inject mali-
cious payloads into SQL statements executed by a database
server. Attackers can use it to steal confidential information
or compromise the integrity of the database [45]. According
to a recent research [4], despite being well-known for over
two decades, SQL injection remains among the top attack
techniques due to their low cost, high impact, and flexibility.

Traditional SQL injection detection approaches [6, 7, 29,
40] generally detect and filter SQL injections through rule
matching. The effectiveness of these approaches highly de-
pends on the design of predefined rules. If a user’s request
matches a rule, it will be reported as malicious. Therefore,
these rules are very fragile in the face of new threats. Besides,
they also suffer from sensitivity challenges - lax matching
rules can significantly increase false positives. In contrast,
stringent matching rules can substantially lead to lower de-
tection rates.

With advancements in machine learning, researchers [18,
24, 39] started to use learning-based approaches to detect
SQL injections. Most of them have focused on detection at
the traffic level. However, the complexity and diversity of
traffic can pose challenges for machine learning models to
detect SQL injections accurately. [12] The difference between
normal traffic and malicious traffic can be very slight. On
the other hand, most fuzzing payloads do not cause a real
hazard, while traffic-level detection will generate numerous
meaningless alerts because of them, severely increasing the
burden on security engineers.

In this paper, we present SQLStateGuard, a deep learning-
based solution to defend against SQL injections. SQLState-
Guard is based on middleware and operates at the state-
ment level, enhancing detection accuracy and reducing false
alarms. It consists of two core components: the SQL mid-
dleware and SQLSG-Net. The SQL middleware, built on the
Runtime Application Self-Protection (RASP) [2] idea, is re-
sponsible for extracting SQL statements and detecting and
blocking SQL injections. SQLSG-Net, on the other hand, is
a statement-level SQL injection detection network based
on Natural Language Processing (NLP). It uses database-
oriented models to detect SQL injections and identify their
types accurately. We summarize our contributions as follows.

Liu et al.

e This paper introduces the idea of RASP into the mid-
dleware, thereby enabling security analysis and block-
ing SQL injection at the statement level. Compared
to existing approaches, SQLStateGuard captures the
statements about to be executed, removing most of the
unnecessary information, resulting in non-intrusive
and accurate blocking of potentially harmful SQL in-
jections.

A new SQL statement-level injection detection net-
work, SQLSG-Net, is proposed to incorporate NLP
techniques. SQLSG-Net conducts SQL semantic pars-
ing and then utilizes database-oriented models based
on gated linear units mechanism to perform high-
precision statement-level difference mining between
SQL statements. This results in more accurate and
faster detection, effectively reducing the number of
false positive reports generated by meaningless SQL
injection vectors.

e A prototype of SQLStateGuard has been implemented
and experimentally validated using datasets generated
through a novel dataset generation process. The results
demonstrate that SQLStateGuard offers significant ad-
vantages over existing approaches. With a binary clas-
sification accuracy of over 99.9%, SQLStateGuard ef-
fectively detects SQL injections with a meager false
positive rate and can accurately identify the different
types of SQL injections.

This paper shares two statement-level SQL injection
datasets ! with the research community, including
more than 145,000 malicious SQL statements catego-
rized by the type of SQL injection.

The rest of this paper is organized as follows: Section 2
presents the existing approaches of SQL injection protection.
Section 3 presents the design of SQLStateGuard. Section 4
uses multiple datasets to evaluate SQLStateGuard. Section 5
discusses the weaknesses and future improvements of SQL-
StateGuard. Section 6 concludes this paper.

2 RELATED WORK

Existing SQL injection protection approaches mainly rely
on rules. [3] Depending on the object of analysis, existing
approaches can be classified into code-level protection and
traffic-level protection.

2.1 Traditional SQL Injection Protection

In terms of code-level protection, existing research is usu-
ally based on static approaches such as taint propagation
analysis [36] to find SQL injection vulnerabilities at the code
level, addressing the root cause of SQL injection problems.

!https://github.com/dstsmallbird/SQLStateGuard_Dataset

https://doi.org/10.1145/3698038.3698569

SQLStateGuard: Statement-Level SQL Injection Defense Based on Learning-Driven Middleware

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

S\\

i Filter

HTTP/HTTPS -l
Requests — '/’
=7

=7

WAF

Statement <\ Statement
I = -

User Server-end
Service

SQL SQL

Database

SQLStateGuard
Service

SQL { |

(\ SQL
Statement y 7 Statement
H
Results - LD e Results
Processing Module
Server-end - Middleware X Database
Service SQL Statement Detection Result Service
y
Structural Feature =~ Semantic Feature SQL Injection
Extraction Layer Extraction Layer Detection Layer
SQLSG-Net S)

Figure 1: Workflow and Architecture of SQLStateGuard

RIPS [11], a static code analysis tool developed for PHP appli-
cations, is one of the most representative approaches of this
kind. Similarly, Mei et al. [19] proposed a grey-box approach
to detect SQL injections in Java runtime. Zhang et al. [46]
tried to use Moving Target Defense (MTD) to reduce the
attack surface of SQL injections.

Most traffic-level protection is based on syntax analysis
of user requests [30], and it is very rare to conduct detection
based entirely on statistical characteristics of network traf-
fic, such as request frequency, request packet size, and the
number of connections. The only existing work is the ap-
proach proposed by Yufei et al. [47] for detecting automated
SQL injection tests. Most of the approaches based on syntac-
tic analysis of user requests are Intrusion Detection System
(IDS)-related studies, which directly detect the content of
user requests (e.g., HTTP messages) based on the completed
protocol parsing, and WAF is the representative. [8] Tra-
ditional IDS can also detect SQL injection attacks, such as
Zolotukhin et al. [48], who model normal user behavior us-
ing anomaly detection algorithms and clustering algorithms
and then identify malicious requests by the deviation values
of user behavior. There are also some ideas to protect against

SQL injection attacks by exploiting the information gap be-
tween attack and defense, e.g., SQLrand [7] uses inserting
random numbers into SQL keywords and modifying SQL
interpreters to counter injections.

2.2 Learning-based SQL Protection
Detection

In code-level protection, researchers have tried to let Al un-
derstand the code and find potential security risks, e.g., Vul-
Hunter [14] based on deep learning and bytecode to detect
SQL injection vulnerabilities in PHP applications. Traffic-
level protection is currently the most popular research topic
in learning-based SQL injection protection. Similar to tradi-
tional approaches, although there are approaches [44] based
entirely on statistical features of traffic, user requests analy-
sis based on packet inspection and protocol analysis using
deep learning techniques is still predominant. Liu et al. [25]
proposed OwlEye, a hybrid attack detection sensor based on
Hidden Markov Model (HMM) designed to defend against
web-layer code injection attacks, achieving a high detection
rate with an acceptable false positive rate through its bidi-
rectional scoring architecture that leverages both benign
and malicious traffic in model training. Peng et al. [35] use

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Multilayer Perceptron (MLP) and Long Short-Term Memory
(LSTM) to detect SQL injections based on packet inspection.
Liu et al. [41] proposed the Multi-class S-TCN model, which
enhances the detection speed and accuracy of SQL injection
attacks by leveraging time convolutional networks, signifi-
cantly improving real-time traffic analysis in IoT scenarios.
Crespo-Martinez et al.[10] use a Logistic Regression-based
model to detect SQL injections. Abaimmov et al. [1] proposed
CODDLE system, which uses Convolutional Neural Network
(CNN) to detect injections. Lu et al. [27] construct a model
named synBERT to dectect SQL injections. In recent years,
there have been some researchers in statement level detec-
tion, but most of their detection rules are relatively simple.
William G. J. et al. [15] combined static analysis with dy-
namic monitoring to develop a tool named AMNESIA. This
tool constructs SQL query models through static analysis
and subsequently monitors queries at runtime to detect po-
tential SQL injection attacks. Konstantinos et al. [20] detect
SQL injection attacks by intercepting SQL statements and
determining whether the statements conform to predefined
specifications.

One of the most important features of SQL injections is
the use of special symbols to break through the original state-
ment structure, which has been discussed in depth by exist-
ing approaches [26, 42, 43]. However, since user-generated
content is highly variable, it is difficult for datasets to cover
all normal user input, making normal user requests (espe-
cially those including special symbols such as single quotes)
easily mistaken for malicious requests. Since the learning-
based approaches rely on generalization, it is difficult to
adjust the rules as traditional approaches do when such prob-
lems arise, which reduces the feasibility of the learning-based
approach in the real world.

3 DESIGN OF SQLSTATEGUARD
3.1 Overview

SQL injection detection is a strong-demand old topic without
Silver Bullets. Successful SQL injections are not specific at the
statement level, so even experienced security experts cannot
tell if a statement is an SQL injection without understanding
the code implementation, which is the biggest challenge in
statement-level defense. We choose to sacrifice flexibility
for accuracy. SQLStateGuard supports every SQL variant or
dialect, but each database in the database server that needs
to be protected needs its own dataset and a corresponding
detection model trained for it.

The part above the dotted line in Figure 1 shows an ap-
plication scenario where the user sends a request to the ap-
plication interface, and then the back-end program does the
actual processing and interacts with the database. As seen
from the figure, SQLStateGuard works between the back-end

Liu et al.

program and the database service, and all SQL statements
are passed through it for security checks. SQLStateGuard
has two working modes: Blocking Mode and Bypass Mode.
In Blocking Mode, SQLStateGuard will check the security of
SQL statements before deciding whether to forward them
to database services, which means this mode can block SQL
injections in real-time. Bypass Mode is suitable for services
with high-frequency requests but low data sensitivity. In
Bypass Mode, SQLStateGuard will forward SQL statements
to the database service and make security checks simultane-
ously, and the two processes are independent of each other.
SQLStateGuard in Bypass Mode will alert security operators
when it finds a malicious SQL statement rather than blocking
SQL injections in real-time.

The architecture of the detection system is shown below
the dotted line in Figure 1, and consists of two significant
components: SQL Middleware and SQLSG-Net. SQL middle-
ware is mainly used to intercept the SQL statements between
the back-end application and the database and block the ma-
licious ones, and its mode of operation is similar to that of a
proxy server. SQLSG-Net is a statement-level SQL injection
detection network based on gated linear units[17], and its
main task is to perform security analysis of SQL statements.

3.2 SQL Middleware

SQL Middleware is the key component used to extract SQL
statements and complete SQL injection detection and block-
ing, and it has three modules: service interface, client inter-
face, and processing module. The service interface is used
to establish connections with the back-end program. For the
back-end program, the service interface behaves as the inter-
face of the database; the client interface is used to establish
connections with the database. For the database, the client
interface behaves as the interface of the back-end program.
The processing module is used to complete the logic and
data forwarding of the SQL middleware.

When SQLStateGuard in Bypass Mode receives the SQL
statement request from the back-end program, the process-
ing module will provide the SQL statement from the service
interface to the detection network SQLSG-Net for security
analysis while using the client interface to forward the SQL
statement to the database and send the return of the database
back to the back-end program through the service interface.
Then, according to the results of the analysis of SQLSG-Net,
it will decide whether to send alarm messages to security
personnel. When SQLStateGuard in Blocking Mode receives
an SQL statement from the back-end program, the process-
ing module will provide the SQL statement from the service
interface to SQLSG-Net for security analysis. If SQLSG-Net
labels the SQL statement as normal, the processing mod-
ule forwards this statement to the database and provides

SQLStateGuard: Statement-Level SQL Injection Defense Based on Learning-Driven Middleware

the result returned by the database service to the back-end
program.

In the real world, attackers usually perform fuzzy tests
against WAFs and other protection systems to discover flaws
in their rules before performing an effective SQL injection,
mainly by inserting special characters. SQL Middleware only
blocks SQL statements that are labeled malicious by SQLSG-
Net. If the attacker’s test vectors do not constitute SQL in-
jections, SQL Middleware will not block them, allowing the
attacker to obtain normal returns. It makes it much more
difficult for the attacker to find the vulnerability in the inter-
ception rules through fuzzy tests as in the case of traditional
WAFs, thus increasing the attacker’s attack cost.

3.3 SQLSG-Net

The structure of SQLSG-Net is shown in Figure 2. SQLSG-
Net extracts both the syntactic structure information from
SQL keywords and the semantic information from the whole
statement to distinguish malicious SQL statements from nor-
mal SQL statements. The SQLSG-Net consists of three layers:
Structural Feature Extraction Layer, Semantic Feature Ex-
traction Layer, and SQL Injection Detection Layer.

3.3.1 Structural Feature Extraction Layer. For SQL injection,
the core technique is to break the structure of the SQL state-
ment originally designed and expected by the developers,
and the difference in structure is one of the main differences
between normal SQL statements and malicious SQL state-
ments.

Table 1: Generalization Rules

Target Generalization Results
Column Name TK_IDTF
Table Name TK_IDTF
Numerical Value 0
String TK_STR
Function TK_F
System/User Variable TK_VAR
Alias TK_IDTF
Comment TK _C

The input of this layer is original text, and the output is pro-
cessed text. This layer generalizes the components of the SQL
statement, eliminates redundant information, and preserves
the structural features of the SQL statement, thus laying
the foundation for the subsequent semantic analysis. This
layer starts with the construction of an Abstract Syntax Tree
(AST) for the SQL statement, which is implemented using the
Go-based SQL syntax parser provided by PingCAP[31], and
Figure 3 shows an SQL statement and the AST corresponding

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

to it. By traversing the AST, this layer extracts the SQL state-
ment components, such as table names and column names,
that are irrelevant to SQL injections and generalizes them
to fixed values. Specifically, the generalization targets and
results are shown in Table 1. This layer does not generalize
SQL keywords such as SELECT, INSERT, BEGIN, SUM, and
SQL built-in functions. Unlike other strings, these keywords
are essential components of statement structure and directly
reflect the function of the statement. Through this layer, the
changes caused by user-side input in the SQL statement are
eliminated considerably, while the structural features of the
SQL statement are preserved.

As mentioned earlier, an attacker usually performs a series
of fuzz tests before performing an effective SQL injection.
In addition to detecting flaws in the protection system, the
attacker may use these fuzz tests to cause syntactic errors
in the SQL statements spliced by the back-end program to
determine the specific injection techniques. Since this layer
parses the syntax of SQL statements, SQLStateGuard can
capture the appearance of SQL syntax errors and help se-
curity personnel find the attacker and locate the injection
point before an effective attack occurs, thus alleviating the
offensive and defensive asymmetry of SQL injection attacks
and establishing the information advantage for the blue side.
Since normal SQL statements do not have syntax errors in
this layer, an abnormal statement will be determined if an
SQL statement has a syntax error.

3.3.2 Semantic Feature Extraction Layer. The input of this
layer is text, and the output is a sentence vector. The SQL
statements are treated as a natural language to extract their
contextual relationships and semantic features in this layer.
Then, the generalized SQL statements output from the Struc-
tural Feature Extraction Layer are vectorized to generate
numerical sentence vector representations for subsequent
SQL injection detection. After obtaining the generalized SQL
statements from the Structural Feature Extraction Layer, the
semantic feature extraction layer performs segmentation
and encoding to get the subscript sequence of the SQL state-
ments, which is illustrated in Figure 4. The "subscript se-
quence" refers to the sequence number of a particular word
in a pre-set vocabulary. In this paper, we use AlbertTokenizer
provided by Transformer [37] open-source project to do this
part, which is based on SentencePiece [22].

After obtaining the subscript sequence, this layer uses the
Albert [23] model to generate a sentence vector. Bert [21]
is a widely used pre-training model in NLP, which is based
on Transformer and performs well on a range of semantic
understanding tasks. Albert is a variant of the Bert, which
reduces the number of parameters by weight sharing and ma-
trix decomposition to reduce parameter data, thus decreasing
spatial complexity. This layer takes the encoded subscript

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Liu et al.

Input

77N

SQL Statement <

Abstract
Syntax Tree

Column Name,
Table Name

< Generalized Text

Hl<

Sentence
Vector

Subscripts

Sequence Segmentation

Statement-Level SQL Injection Detection Network

Detection Network

+ < O Normal
E © Malicious

Figure 2: SQLSG-Net Structure

SELECT umeta_id, username FROM wp_usermeta WHERE status = 'ACTIVE' AND age < 30

Lexical Analysis and Syntex Analysis

Abstract Syntax Tree

SELECT

N

{ umeta_id } (usemame\‘

FROM TABLES CONDITIONS

[wp_usemeta]

= <
status "ACTIV'E’ \E i}

Figure 3: AST Construction

sequence as the input of the Albert model and obtains its
sentence vector output. Albert provides four different sizes
of pre-trained models, and this layer uses the most minia-
ture scale model, Albert-Base, which has only 12 million
parameters and 768 hidden units.

SELECT * FROM users WHERE id = 1

l Segmentation

['_select',’'_*',' from','_users',' where',' id',' =" 1']

l Add Special Token

['[CLS]', '_select','_*','_from','_users','_where','_id','_=','_1','[SEP]']

l Generate Subscripts Sequence

[2, 5407, 1637, 37, 3878, 113, 4924, 800, 137, 3]

Figure 4: Segmentation and Encoding Example

3.3.3 SQL Injection Detection Layer. This layer is based on
Gated Linear Unit (GLU). Its input is the sentence vector from
the Semantic Feature Extraction Layer, and its output is the
multi-classified SQL injection detection result. Its structure
is shown in Figure 5. Introducing GLU for this layer helps
the network focus on key information and structures and
thus achieve fine-grained SQL injection detection. Please
note that the models in this layer are database-oriented,

SQLStateGuard: Statement-Level SQL Injection Defense Based on Learning-Driven Middleware

——
v [O © @ @

© © 0 0]

o

| I

|0 0 0 0 0 0 0 0 O]
l
o

A=ExW+b
Repeat
} 2 times
B=ExV+ec
GLU
Layer
Hy=A®oa(B)
Dense
e | @

Figure 5: SQL Injection Detection Network Based on
GLU

meaning multiple detection models are trained for dif-
ferent databases. Next, we introduce the computation pro-
cess of GLU used in this layer. We denote the sentence vector
input to this layer as X:

X = {XlaXZ""aXn} (1)
Then, normalize the input sentence vector:

x —E(x)

VVar[x] + ¢

Next, use the Dense layer to process the normalized data.

N = x*y+f, forxinX (2)

D=W,N+b ©)
Then, use the GLU layer to process the output of the Dense
layer.

A=EXW+b (4)
B=EXV+c¢c (5)
Hy = A® o(B) (6)

In this layer, the sentence vector of the input SQL state-
ment is processed by the GLU-based network, and Dense and
Softmax obtain the final classification probability output:

Output = Activation((Input - Weight) + Bias) (7)

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

In Eq. 7, Input is the input vector of Dense, Weight is
the weight matrix, Bias is the bias matrix, and Activation is
the activation function. The main work of Dense is to map
the GLU Layer output feature vector to the output space
by a nonlinear transformation based on the fully connected
structure:

Z = Wnxn - Xnxd + Bmxd (8)

In Eq. 8, m is the number of neurons of Dense, d is the
dimensionality of the input vector, and n is the number of
samples. The W,,,., is the weight matrix, X;,.4 is the matrix
composed of samples, and B,,.4 is the bias matrix. Finally,
Softmax maps the output of Dense to a probability distribu-
tion:

e%i
ity e

Where z; is the i-th input value, the probability of the
sample belonging to each category is obtained by Softmax,

and the category with the highest probability is used as the
result of SQL injection detection.

Softmax(z;) = 9)

3.4 Dataset Generation Process for
SQLStateGuard

Even experienced security experts cannot tell if a statement
is an SQL injection without understanding the code imple-
mentation. It directly leads to the lack of statement-level SQL
injection datasets, making statement-level SQL injection de-
tection challenging to implement. This part shows how to
generate statement-level datasets for the databases that need
to be protected by SQLStateGuard.

SQLStateGuard requires both normal and malicious sam-
ples for training. To generate these samples, the dataset gen-
eration process proposed in this paper can be briefly divided
into three steps: injection payload collection, template state-
ment collection, and statement splicing.

1 Middleware)

@ emel | [server-Side| —""_, [Client-Side| | 1"

Q — Socket | Socket —
. —3
Application L) Database
lSQL Statements
(Local
SQL Statements Dataset

.

J

Figure 6: Template Statement Collection

We first need to complete the injection payload collec-
tion. Since there are many payload-level SQL injection de-
tection studies and the related datasets are rich, this paper

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

collects payloads from existing public datasets such as Data-
Hacking [34] and LibInjection [13]. In addition, we also col-
lect the payloads used by automated testing tools such as
SqlMap [5]. Then, we conduct template statement collection,
a step that is also done based on middleware. As shown in
Figure 6, we collect the SQL statements generated by per-
forming functional tests after setting up middleware between
the application and the database. These statements are both
normal samples in the dataset and template statements used
to construct malicious samples.

rich_editing' AND 93=93 # [—SQL Injectiol
Payload

SELECT umeta_id FROM wp_usermeta WHERE meta_key = 'rich_editing' AND user_id=1

Template Statement

|

SELECT umeta_id FROM wp_usermeta WHERE meta_key = 'rich_editing' AND 93=93 #'
AND user_id =1

Figure 7: Payload-to-Template Splicing

Finally, we splice the payloads into the template state-
ments and label the output statements as malicious samples.
Figure 7 is an example of this process. In principle, SQL-
StateGuard accomplishes injection detection by determining
whether the statement to be tested is "abnormal” or not.
Therefore, this dataset generation process is the basis of
SQLStateGuard.

4 EXPERIMENTS

This paper uses different datasets and the following questions
to evaluate SQLStateGuard:

e RQ1: Can SQLStateGuard effectively detect SQL injec-
tions against database services?

e RQ2:Is SQLSG-Net based on GLU network better than
other implementations?

e RQ3: Is the detection cost of SQLStateGuard accept-
able in real-world environments?

o RQ4: Is SQLStateGuard better than existing SQL in-
jection detection approaches?

4.1 Datasets

This paper uses two statement-level SQL injection datasets

generated by the process in Section 3.4 and two HTTP

request datasets constructed based on them. The statement-

level SQL dataset is used to train and evaluate the SQLSG-Net
in SQLStateGuard, while the HTTP request dataset is used to
compare SQLStateGuard and other traffic-based approaches
in a side-by-side manner.

Liu et al.

Table 2: Details of Statement-Level SQL Injection
Datasets

Dataset Dataset ID Type Count

. Malicious 74,555
Self-Built I Normal 75,000
Malicious 71,757

WordPress II Normal ~ 79.316

Table 3: Details of Malicious Statement-Level SQL In-
jection Datasets

Detail Type Dataset I Dataset II
Time-based 1,588 1,392
Boolean-based 2,196 2,012
Error-based 3,491 3,206
Tautology-based 9,135 8,359

Union-based 58,145 56,788

The details of the statement-level SQL injection datasets
used in this paper are shown in Table 2 and Table 3, which
come from a self-built Web application (Dataset I) and a
WordPress [38] instance (Dataset II), respectively. The self-
built Web application is an Application Programming Inter-
face (API) gateway based on Sanic Framework [33]. Word-
Press is the most widely used open-source content manage-
ment system in the world. The total count of SQL statements
in the two datasets exceeds 300,000.

Table 4: Details of HTTP Request Dataset

Dataset DatasetID Main Label Count
. Malicious 22,334
Self-Built 1 Normal 22.534
Malicious 13,421

WordPress v Normal 13,335

The HTTP request datasets based on the statement-level
SQL injection datasets are similarly divided into Dataset III
(self-built Web application) and Dataset IV (WordPress). The
details of these two datasets are shown in Table 4. Since the
application processing of an HTTP request may generate
multiple SQL statements, the number of samples in the HT'TP
request dataset and the statement-level SQL injection dataset
is different.

Please note that since some abnormal samples are injected
based on syntax errors, they are blocked at the structural
feature extraction layer. So, for RQ 1, 2, and 3, the dataset
is all SQL statements that pass through the structural fea-
ture extraction layer. The relationship between the original

SQLStateGuard: Statement-Level SQL Injection Defense Based on Learning-Driven Middleware

dataset and the dataset that passes through the structural
feature extraction layer is shown in Table 5.

4.2 Implementation, Setup, and Metrics

In terms of the hardware environment, we use a GPU server
(NVIDIA RTX A6000) to complete the training and evaluation
of SQLStateGuard. In terms of software implementation, this
paper implements a prototype system of SQLStateGuard
based on Python [32] 3.8.5, and other approaches involved
in the experiments come from their official implementations
or the implementations provided by the authors.

We use Accuracy, Recall, Precision, F1-Score, and False Pos-
itive Rate (FPR = %) to evaluate SQLStateGuard. Con-
sidering the unbalanced datasets used in evaluating SQL-
StateGuard, we will use weighted metrics to complete the
multi-classification evaluation of SQLStateGuard. In this pa-
per, the weight of each classification is defined as the pro-
portion of samples in the total sample and is denoted as

Ci i .. .
L = i 2. Then, we calculate the metrics in a multi-
Zi Zj Ct,]

classification scenario by weighting the average for a more
fine-grained evaluation of SQLStateGuard. We have:

Accuracyapg = Z W; % Accuracy; (10)
i

Precisiongyy = Z W; * Precision; (11)
i

Recallyyy = Z W; = Recall; (12)
i

F1—Scoregyg = Z W; * F1 — Score; (13)
i

4.3 Training and Detection Performance

(RQ1)

To answer RQ1, two statement-level SQL injection datasets
(Dataset I and Dataset II) are used to train SQLSG-Net. In
this experiment, the SQL statements in the dataset are firstly
converted into sentence vectors by the Structural Feature Ex-
traction Layer and the Semantic Feature Extraction Layer in
SQLSG-Net while preserving the labels. Then, these sentence
vectors and their labels are used to train the SQL injection
detection models based on GLU.

In this experiment, we divide the training set, test set,
and validation set according to the ratio of 6:2:2. First, we
use Dataset I for the training evaluation of SQLSG-Net, de-
rived from a self-built Web application to evaluate the SQL
injection detection performance for APIs.

After the training based on Dataset I is completed, the
performance of SQL injection detection is evaluated based
on binary classification and multi-classification criteria us-
ing the test set divided from Dataset I, as shown in Table 6.

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

The binary classification evaluation only distinguishes be-
tween normal and malicious, which mainly shows the per-
formance of SQLSG-Net to detect SQL injections. The multi-
classification evaluation is more fine-grained and evaluates
SQLStateGuard’s ability to distinguish different SQL injec-
tion types, and better differentiation means that SQLState-
Guard can provide more information to security operators
and help them locate and analyze security threats.

Then, we use Dataset II to perform training evaluation on
SQLSG-Net. Compared with Dataset I, the content-driven
Dataset II is more complex and has a greater variety of SQL
statement structures. Here are two injected statements of
the same type, and we can see that the structures of the
statements in Dataset II are more complex than those in
Dataset I:

Listing 1: Examples of Malicious Statements in Dataset
I and Dataset II

A Time-based Injection in Dataset I
select user_id, password from info.users where
username='admin’; select sleep (5);—- '

A Time-based Injection in Dataset II

SELECT SQL_CALC_FOUND_ROWS wp_posts.ID FROM
wp_posts WHERE 1=1 AND wp_posts.post_type ="
wp_block' AND ((wp_posts.post_status = 'publish'));
SELECT SLEEP(5)-- ')) ORDER BY wp_posts.
post_date DESC LIMIT 0, 100

After the training based on Dataset II is completed, we
use the test set divided from Dataset II to evaluate SQL-
StateGuard, and the results are shown in Table 7. We can
see that SQLStateGuard also works well on Dataset II, but
the complexity and diversity slightly degrade the detection
performance.

In summary, this experiment gives a pretty satisfactory
answer to RQ1. SQLStateGuard has excellent SQL injection
detection capability and can accurately identify the type of
SQL injections, thus helping security personnel locate and
analyze security threats.

Case Study I: The results show that the overall perfor-
mance of the multi-classification evaluation is reduced com-
pared to the binary-classification evaluation. After analyzing
each category in the datasets, we found that some malicious
samples suffered from multiple types of SQL injections, such
as the payload "admin’ AND SLEEP(5) AND ’fhez’=’fhez",
which combines both time-blind and tautology-based SQL
injections. However, these samples are only classified into
a single category in the datasets, so the model may predict
them as inconsistent with the tagged labels.

Case Study II: The following two SQL statements illus-
trate examples of those captured and missed by our system.

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Liu et al.

Table 5: The Relationship between the Original Dataset and the Dataset that Passes through the Structural Feature

Extraction Layer

Original Structural Feature Extraction
Normal Malicious Normal Malicious
Dataset I 75,000 74,555 75,000 74,555
Dataset II 79,316 71,757 79,316 64,541

Table 6: Detection Evaluation on Test Set of Dataset I

Type Accuracy Recall

Precision F1-Score FPR

100.00%
99.05%

Binary
Multiple

100.00%
98.58%

100.00%
97.43%

100.00% 0.00%
97.98% N/A

* Multi-classification metrics are weighted averages

Table 7: Detection Evaluation on Test Set of Dataset 11

Type Accuracy Recall Precision F1-Score FPR

99.97%
98.93%

Binary
Multiple

99.95%
95.06%

99.98%
96.06%

99.97% >0.00%
95.55% N/A

* Multi-classification metrics are weighted averages

We believe the first statement, which was not captured, con-
tains a large number of query units, which likely obscured its
malicious characteristics. In contrast, the second statement,
with fewer query units, was easily detected by our system.
However, cases like the first statement, where the system
fails to capture it, are extremely rare (only 6 in datasets I and
II), and thus we believe they have minimal impact on our
system’s overall performance.

Listing 2: Examples of Malicious Statements in Dataset
I and Dataset II

An Malicious SQL System didn’t Caught

SELECT COUNT(x) FROM wp_term_relationships,
wp_posts WHERE wp_posts.ID =
wp_term_relationships.object_id AND post_status IN
(‘publish’) AND post_type IN (‘post’) AND
term_taxonomy_id = 1 and 1=0 union select 1,
concat_ws(0x3a,version () ,user () , database ())

,3,4,5,6,7,8,9,10,11,12—-

An Malicious SQL System Caught

SELECT meta_id FROM wp_postmeta WHERE meta_key
="'_edit_lock' AND post_id = 1 and 1=0 union select
1,2,3,concat_ws(0x3a, version () ,user () ,database ())
S--

4.4 Implementation Comparison of
SQLSG-Net (RQ2)

This experiment focuses on verifying whether SQLSG-Net’s
implementation based on GLU has a comparative advantage
over other solutions. In this experiment, we use detection
models from other learning-based techniques to replace the
SQL Injection Detection Layer in SQLSG-Net and then com-
pare the detection effectiveness of the different implementa-
tions. There are two other learning-based models involved
in this experiment: SVM [9] and LSTM [16].

The results of this experiment are shown in Table 8. It
is obvious from the table that SVM has poor performance,
especially its false positive rate, which makes SQL injection
blocking impractical. The overall performance of the models
on Dataset II is slightly worse than that of Dataset I, espe-
cially when performing the multi-classification evaluation,
mainly because WordPress generates a wider variety of SQL
statement types than self-built web applications.

Besides, we can see the performance of LSTM is pretty
good, though still inferior to the GLU network used by
SQLSG-Net. It is an excellent example of the effectiveness
of SQLStateGuard’s architecture and feature engineering
design. Finally, SQLSG-Net has the best performance in all
evaluation metrics, demonstrating the comparative advan-
tage of its implementation over other solutions.

SQLStateGuard: Statement-Level SQL Injection Defense Based on Learning-Driven Middleware

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Table 8: Detection Layer Evaluation on Dataset I and Dataset II

Implementation Dataset Classification Type Accuracy Recall Precision F1-Score FPR
I Binary 99.92% 99.84% 100.00% 99.92% 0.00%

SVM Multiple 97.26% 77.22% 88.94% 81.16% N/A

I Binary 97.81% 99.68% 95.87% 97.74% 3.89%

Multiple 96.27% 65.71% 86.43% 67.74% N/A

I Binary 99.99% 100.00% 99.97% 99.99% >0.00%

LSTM Multiple 98.37% 89.60% 91.76% 90.61% N/A

1 Binary 99.95% 99.81% 99.92% 99.94% >0.00%

Multiple 97.77% 80.53% 89.51% 83.61% N/A

I Binary 100.00% 100.00% 100.00% 100.00% 0.00%

SQLSG-Net Multiple 99.05% 98.58% 97.43% 97.98% N/A
I Binary 99.97% 99.95% 99.98% 99.97% >0.00%

Multiple 98.93% 95.06% 96.06% 95.55% N/A

* Multi-classification metrics are weighted averages

4.5 Cost Evaluation (RQ3)

This experiment is designed to answer RQ3. The presence
of additional security detection will inevitably lead to in-
creased latency, and whether these additional latencies will
seriously interfere with the use of database services by back-
end programs is one of the critical questions of whether
SQLStateGuard can be deployed in the real world. In this
experiment, we combine Dataset I and Dataset II into one
and evaluate the detection time overhead of SQLStateGuard,
and the results are shown in Table 9.

The feature extraction layers of SQLSG-Net mainly cause
the overhead of SQLStateGuard. The additional time over-
head of 10.499ms for a single SQL statement can satisfy the
need for SQL injection blocking in most application scenar-
ios. However, if a single application interface call contains
many SQL statements, SQLStateGuard may slow down the
result return speed. Therefore, this paper designs a Bypass
Mode to provide SQL injection detection for latency-sensitive
scenarios.

4.6 System-Level Comparative Evaluation

(RQ4)

To answer RQ4, two existing approaches, Luo et al. [28] and
Yong et al. [43], are selected for comparison with SQLState-
Guard in this experiment. The first approach is based on log
analysis and CNN. The second is a malicious traffic detection
approach based on Hidden Markov Model (HMM).

Since both of them analyze samples at the HTTP traffic
level, and the analysis results are only normal and malicious,
we use two HTTP request datasets (Dataset Il and Dataset

IV) to complete this experiment and perform a system-level
evaluation based on binary-classification metrics.

In this experiment, we first parse the HTTP requests in
Dataset III and Dataset IV into the log formats required by
these two approaches and respectively evaluate their perfor-
mance. The SQLStateGuard proposed in this paper works
at the statement level, and usually an HTTP request con-
tains more than one SQL statement, which means that for a
malicious request, as long as any of its corresponding state-
ments is determined to be malicious, the HTTP request is
malicious, which greatly increases the success rate of SQL-
StateGuard’s judgment. If the back-end application sends
an SQL statement to the database service while processing
an HTTP request, SQLStateGuard will record and analyze
this statement. The results of this experiment are shown in
Table 10.

The results show that the false positive is the most critical
weakness of existing approaches. By analyzing their false
positive samples, we found that Luo et al. labeled unfamiliar
words (e.g., usernames not in the corpus) malicious due to
the limited generalization ability. At the same time, both Luo
et al. and Yong et al. have difficulty coping with the complex
traffic variation. It is prone to false positives when detecting
samples containing special characters and long strings of
numbers and letters.

Overall, compared with existing approaches, SQLState-
Guard has significant advantages in all metrics of SQL injec-
tion detection, including Dataset IV with relatively complex
samples, which answers RQ4 very well.

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Liu et al.

Table 9: Average Time Overhead of Single-Statement Detection

Working SQL

SQLSG-Net

. Total
Mode Middleware Structural Semantic Detection
Bypass 0.31ms 0 0 0 0.31ms
Blocking 0.31ms 0.37ms 9.97ms 0.16ms 10.50ms
Table 10: Comparison Evaluation Results
Luo et al. Yong et al. Ours
Dataset I v v I v
Accuracy 88.68% 86.43% 98.46% 93.35% 100.00% 100.00%
Recall 88.68% 86.43% 98.46% 93.35% 100.00% 100.00%
Precision 89.15% 87.25% 98.51% 93.59% 99.99% 100.00%
F1-Score 88.65% 86.35% 98.46% 93.34% 100.00% 100.00%

FPR 16.70% 21.10%

0.00%

10.41% >0.00% 0.00%

5 DISCUSSION

5.1 Weakness of SQLStateGuard

Experiments show that the SQLStateGuard proposed in this
paper is significantly better at detecting SQL injections than
existing approaches, making it seem to have a severe overfit-
ting risk - but this is not the case. SQLStateGuard is not the
end of the story, and its impressive detection performance is
mainly due to two factors:

First, SQLStateGuard needs to train different detection
models for different databases. This design significantly re-
duces the variation of normal statements, thus making mali-
cious SQL statements more prominent. On the other hand,
it also increases the deployment costs, making SQLState-
Guard very challenging in protecting the applications de-
signed on new agile development models such as DevOps.
Therefore, SQLStateGuard only suits the services provided
by traditional organizations (e.g., government), which are
always data-rich and security-critical but have very little
code change after deployment.

Second, SQLStateGuard simultaneously uses different di-
mensions of SQL statement information for feature extrac-
tion. Combined with a GLU-based network, tiny differences
between the normal and the injected statements can be ef-
fectively found. However, this design also increases the time
overhead, which affects the real-time performance of SQL-
StateGuard.

In the current context of the popularity of cloud comput-
ing, there may be so many requests for access to a particular
service that each request needs to be responded to with very
low latency. For this situation, we designed bypass mode for
performance sensitive situation, in this mode our purpose is

not to block the attack, but for quick warning, the latency
of 0.3ms in this mode is acceptable in most of the situations.
However, if the service is still very performance sensitive or
there are huge amount of requests, we can deploy our solu-
tion using, for example, port mirroring, which can eliminate
the latency.

5.2 Future Improvements

In the future, we will mainly improve SQLStateGuard in two
aspects. First, we will reduce the number of models as much
as possible so that each model can serve more databases,
thus reducing model training and deployment costs. Second,
we will improve the feature engineering process of SQL-
StateGuard and shorten the feature extraction time so that
SQLStateGuard can run in Blocking Mode more often and
achieve better SQL injection protection.

In addition, we will also try to improve the adaptability
of SQLStateGuard to code changes by introducing a novel
scoring mechanism to reduce the number of retraining while
ensuring low FPR, thus meeting the needs of emerging soft-
ware engineering models like DevOps.

6 CONCLUSION

In this paper, we propose SQLStateGuard, a novel statement-
level SQL injection detection approach. SQLStateGuard is
based on the idea of RASP, incorporates middleware into
the database service process, and implements statement-
level SQL injection detection based on GLU. It is proved that
SQLStateGuard can accurately detect SQL injections with
a very low FPR compared to existing approaches and even
identify the tactical types of SQL injections quite accurately.

SQLStateGuard: Statement-Level SQL Injection Defense Based on Learning-Driven Middleware SoCC ’24, November 20-22, 2024, Redmond, WA, USA

SQLStateGuard’s SQL injection detection capabilities are
overwhelmingly superior to existing approaches.

ACKNOWLEDGMENTS

This work is supported by HY-Project under No.4E49EFF3,
the Gansu Province Key Research and Development Plan -
Industrial Project under Grant No. 22YF7GA004, and Super-
computing Center of Lanzhou University.

REFERENCES

[1] Stanislav Abaimov and Giuseppe Bianchi. 2019. CODDLE: Code-
Injection Detection With Deep Learning. IEEE Access 7 (2019), 128617~
128627. https://doi.org/10.1109/ACCESS.2019.2939870

[2] Edward Amoroso. 2018. Recent progress in software security. IEEE
Software 35, 2 (2018), 11-13.

[3] Nuno Antunes and Marco Vieira. 2010. Benchmarking vulnerability
detection tools for web services. In 2010 IEEE International Conference
on Web Services. IEEE, 203-210.

[4] Matthew Bach-Nutman. 2020. Understanding the top 10 owasp vul-
nerabilities. arXiv preprint arXiv:2012.09960 (2020).

[5] Miroslav Stampar Bernardo Damele Assumpcao Guimaraes. 2016.
SQLMAP. https://sqlmap.org/

[6] Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan. 2010. CAN-
DID: Dynamic candidate evaluations for automatic prevention of SQL
injection attacks. Acm Transactions on Information & System Security
13, 2 (2010), 398-404.

[7] Stephen W Boyd and Angelos D Keromytis. 2004. SQLrand: Preventing
SQL injection attacks. In International conference on applied cryptogra-
phy and network security. Springer, 292-302.

[8] Xiaoyi Chen, Qingni Shen, Peng Cheng, Yongqiang Xiong, and Zhong-
hai Wu. 2022. RuleCache: Accelerating Web Application Firewalls by
On-line Learning Traffic Patterns. In 2022 IEEE International Conference
on Web Services (ICWS). IEEE, 229-239.

[9] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks.

Machine learning 20, 3 (1995), 273-297.

Ignacio Samuel Crespo-Martinez, Adrioan Campazas-Vega, An-

gel Manuel Guerrero-Higueras, Virginia Riego-DelCastillo, Claudia

Alvarez Aparicio, and Camino Fernandez-Llamas. 2023. SQL Injection

Attack Detection in Network Flow Data. Computers & Security 127

(2023), 103093. https://doi.org/10.1016/j.cose.2023.103093

[11] Johannes Dahse and Jorg Schwenk. 2010. RIPS-A static source code

analyser for vulnerabilities in PHP scripts. In Seminar Work (Seminer
Calismasi). Horst Gortz Institute Ruhr-University Bochum. Citeseer.

[12] Jesus E Diaz-Verdejo, Rafael Estepa Alonso, Antonio Estepa Alonso,

and German Madinabeitia. 2022. A critical review of the techniques

used for anomaly detection of HTTP-based attacks: taxonomy, limita-

tions and open challenges. Computers & Security (2022), 102997.

Nick Galbreath. 2014. Libinjection. https://github.com/client9/

libinjection

Ning Guo, Xiaoyong Li, Hui Yin, and Yali Gao. 2019. Vulhunter: An

automated vulnerability detection system based on deep learning and

bytecode. In International Conference on Information and Communica-

tions Security. Springer, 199-218.

William GJ Halfond and Alessandro Orso. 2005. AMNESIA: analysis

and monitoring for neutralizing SQL-injection attacks. In Proceedings

of the 20th IEEE/ACM international Conference on Automated software

engineering. 174-183.

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-term

Memory. Neural computation 9 (12 1997), 1735-80. https://doi.org/10.

1162/neco0.1997.9.8.1735

[10

[t

(13

[t

(14

=

(15

=

[16

=

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

(33]
[34]

[35]

[36]

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. 2022. Transformer
quality in linear time. In International conference on machine learning.
PMLR, 9099-9117.

Anamika Joshi and V Geetha. 2014. SQL Injection detection using
machine learning. In 2014 international conference on control, instru-
mentation, communication and computational technologies (ICCICCT).
IEEE, 1111-1115.

Mei Junjin. 2009. An Approach for SQL Injection Vulnerability Detec-
tion. 2009 Sixth International Conference on Information Technology:
New Generations (2009), 1411-1414.

Konstantinos Kemalis and Theodores Tzouramanis. 2008. SQL-IDS: a
specification-based approach for SQL-injection detection. In Proceed-
ings of the 2008 ACM symposium on Applied computing. 2153-2158.
Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova.
2019. Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of naacL-HLT, Vol. 1. Minneapolis,
Minnesota, 2.

Taku Kudo and John Richardson. 2018. Sentencepiece: A simple and
language independent subword tokenizer and detokenizer for neural
text processing. arXiv preprint arXiv:1808.06226 (2018).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,
Piyush Sharma, and Radu Soricut. 2019. Albert: A lite bert for
self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942 (2019).

Q. Li, W. Li, J. Wang, and M. Cheng. 2019. A SQL Injection Detection
Method based on Adaptive Deep Forest. IEEE Access PP, 99 (2019),
1-1.

Xin Liu, Qingchen Yu, Xiaokang Zhou, and Qingguo Zhou. 2018. Owl-
Eye: An Advanced Detection System of Web Attacks Based on HMM.
In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Com-
puting, 16th Intl Conf on Pervasive Intelligence and Computing, 4th
Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE,
200-207.

Xin Liu, Wengiang Zhang, Xiaokang Zhou, and Qingguo Zhou. 2021.
MECGuard: GRU enhanced attack detection in Mobile Edge Computing
environment. Computer Communications 172 (2021), 1-9.

Dongzhe Lu, Jinlong Fei, and Long Liu. 2023. A Semantic Learning-
Based SQL Injection Attack Detection Technology. Electronics 12, 6
(2023), 1344. Issue 6. https://doi.org/10.3390/electronics12061344

Ao Luo, Wei Huang, and Wengqing Fan. 2019. A CNN-based Approach
to the Detection of SQL Injection Attacks. In 2019 IEEE/ACIS 18th
International Conference on Computer and Information Science (ICIS).
IEEE, 320-324.

J. Mei. 2009. An Approach for SQL Injection Vulnerability Detection.
In Information Technology: New Generations, 2009. ITNG °09. Sixth
International Conference on.

Basem Ibrahim Mukhtar and Marianne A Azer. 2020. Evaluating the
modsecurity web application firewall against sql injection attacks.
In 2020 15th International Conference on Computer Engineering and
Systems (ICCES). IEEE, 1-6.

PingCAP. 2022. MySQL Parser. https://github.com/pingcap/parser
Python.org. 2022. The official home of the Python Programming
Language. https://python.org/.

Sanic. 2022. Sanic Framework. https://sanic.dev/en/.
SuperCowPowers. 2013. Data-Hacking,. https://github.com/
SuperCowPowers/data_hacking/tree/master/sql_injection/data

Peng Tang, Weidong Qiu, Zheng Huang, Huijuan Lian, and Guozhen
Liu. 2020. Detection of SQL injection based on artificial neural network.
Knowl. Based Syst. 190 (2020), 105528.

Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri
Weisman. 2009. TAJ: effective taint analysis of web applications. ACM

https://doi.org/10.1109/ACCESS.2019.2939870
https://sqlmap.org/
https://doi.org/10.1016/j.cose.2023.103093
https://github.com/client9/libinjection
https://github.com/client9/libinjection
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/electronics12061344
https://github.com/pingcap/parser
https://python.org/
https://sanic.dev/en/
https://github.com/SuperCowPowers/data_hacking/tree/master/sql_injection/data
https://github.com/SuperCowPowers/data_hacking/tree/master/sql_injection/data

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

(37

—

(38]

(39]

(40]

[41]

[42]

Sigplan Notices 44, 6 (2009), 87-97.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All you Need. In Advances in Neural Information Processing
Systems, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates,
Inc.

WordPress. 2022. Blog Tool, Publishing Platform, and CMS. https:
//wordpress.org/.

X. R. Wu and Ppk Chan. 2012. SQL injection attacks detection in
adversarial environments by k-centers. In International Conference on
Machine Learning & Cybernetics.

Z. Xiao, Z. Zhou, W. Yang, and C. Deng. 2017. An approach for SQL
injection detection based on behavior and response analysis. In 2017
IEEE 9th International Conference on Communication Software and
Networks (ICCSN).

Liu Xin, Liu Ziang, Zhang Yingli, Zhang Wengqiang, Lv Dong, and
Zhou Qingguo. 2022. TCN enhanced novel malicious traffic detection
for IoT devices. Connection Science 34, 1 (2022), 1322-1341.
Wenchuan Yang, Wen Zuo, and Baojiang Cui. 2019. Detecting Ma-
licious URLSs via a Keyword-Based Convolutional Gated-Recurrent-
Unit Neural Network. IEEE Access 7 (2019), 29891-29900. https:
//doi.org/10.1109/ACCESS.2019.2895751

[43]

[44]

[45]

[46]

[47]

[48]

Liu et al.

Binbin Yong, Xin Liu, Qingchen Yu, Liang Huang, and Qingguo Zhou.
2019. Malicious Web traffic detection for Internet of Things environ-
ments. Computers & Electrical Engineering 77 (2019), 260-272.
Huafeng Zhang, Bo Zhao, Hui Yuan, Jinxiong Zhao, Xiaobin Yan, and
Fangjun Li. 2019. SQL injection detection based on deep belief network.
In Proceedings of the 3rd International Conference on Computer Science
and Application Engineering. 1-6.

Su Zhang and Ying Zhang. 2022. Privacy Leakage Vulnerability De-
tection for Privacy-Preserving Computation Services. In 2022 IEEE
International Conference on Web Services (ICWS). 219-228. https:
//doi.org/10.1109/ICWS55610.2022.00043

Yaqin Zhang, Duohe Ma, Xiaoyan Sun, Kai Chen, and Feng Liu. 2020.
WGT: Thwarting Web Attacks Through Web Gene Tree-based Moving
Target Defense. In 2020 IEEE International Conference on Web Services
(ICWS). 364-371. https://doi.org/10.1109/ICWS49710.2020.00054

F ZHAOY, G XIONG, et al. 2016. SQL injection behavior detection
method for network environment [J]. Journal of Communications 37,
2(2016), 88-97.

M. Zolotukhin, T. Himaildinen, T. Kokkonen, and J. Siltanen. 2014.
Analysis of HTTP Requests for Anomaly Detection of Web Attacks. In
2014 IEEE 12th International Conference on Dependable, Autonomic and
Secure Computing. 406—-411. https://doi.org/10.1109/DASC.2014.79

https://wordpress.org/
https://wordpress.org/
https://doi.org/10.1109/ACCESS.2019.2895751
https://doi.org/10.1109/ACCESS.2019.2895751
https://doi.org/10.1109/ICWS55610.2022.00043
https://doi.org/10.1109/ICWS55610.2022.00043
https://doi.org/10.1109/ICWS49710.2020.00054
https://doi.org/10.1109/DASC.2014.79

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional SQL Injection Protection
	2.2 Learning-based SQL Protection Detection

	3 Design of SQLStateGuard
	3.1 Overview
	3.2 SQL Middleware
	3.3 SQLSG-Net
	3.4 Dataset Generation Process for SQLStateGuard

	4 Experiments
	4.1 Datasets
	4.2 Implementation, Setup, and Metrics
	4.3 Training and Detection Performance (RQ1)
	4.4 Implementation Comparison of SQLSG-Net (RQ2)
	4.5 Cost Evaluation (RQ3)
	4.6 System-Level Comparative Evaluation (RQ4)

	5 Discussion
	5.1 Weakness of SQLStateGuard
	5.2 Future Improvements

	6 Conclusion
	Acknowledgments
	References

