
LiScopeLens: An Open-Source License
Incompatibility Analysis Tool Based on Scope

Representation of License Terms
Ziang Liu1†, Xin Liu1†∗, Yingli Zhang1, Zihao Zhang1, Song Li2, Weina Niu3,

Qingguo Zhou1, Rui Zhou1∗, Xiaokang Zhou4
1 Lanzhou University, {liuza20, bird, 120220909270, zhzihao2023, zhouqg, zr}@lzu.edu.cn

2 Zhejiang University, songl@zju.edu.cn
3 University of Electronic Science and Technology of China, vinusniu@uestc.edu.cn

4 Kansai University, zhou@kansai-u.ac.jp

Abstract—Open-source software has emerged as a pivotal
force in the advancement of information technology. Robust
open-source compliance governance is essential for the sustain-
able and healthy growth of both open-source software and
its communities. License incompatibility analysis, in particular,
represents a critical challenge hindering the progress of open-
source software. Traditional methods of incompatibility analysis
often fail to account for diverse usage scenarios or are tailored
to a limited subset of scenarios. This limitation obstructing
their ability to handle the intricate compatibility arising from
varied programming language interactions, leading to a high false
positives. Our study embarks from an examination of license
exceptions, delving into the incompatibility analysis challenges
through extensive empirical research on these exceptions. We
discovered that the majority of exceptions are, in fact, detectable.
Leveraging this empirical insight, our research further develops
the license compatibility analysis model by introducing a new,
refined legal terminology representation alongside a novel method
for license compatibility reasoning. This approach begins with
modeling different scenarios to represent license compatibility
variably. Furthermore, based on these modeling outcomes, we
have designed and implemented LiScopeLens, a tool capable
of discerning dependency behaviors for granular compatibility
assessment, starting with binary dependencies. Our experimental
findings affirm that LiScopeLens proficiently determines the li-
cense compatibility status of open-source software across various
usage scenarios, demonstrating its significant practical utility.

Index Terms—Open Source Software, Open Source Compli-
ance, License, Incompatibility Detection

I. INTRODUCTION

Open-source compliance governance is crucial for the sus-
tainable and healthy development of the open-source com-
munity, with license compliance being particularly critical.
The growing size of open-source software, as shown by a
27% increase in projects hosted on GitHub in 2023 [1],
and its crucial role in driving the development of informa-
tion technology [2], [3], highlight the importance of license
compliance for the long-term viability of the open-source
community. Misunderstandings or incorrect applications of

∗ Xin Liu and Rui Zhou are corresponding authors.
† These authors contributed equally in this work.

open-source licenses by enterprises or individuals can lead to
legal risks [4]. These risks often arise from dependencies on
third-party components with conflicting licenses or changes in
their licensing terms. Numerous studies and real-world cases
have documented the severe consequences of non-compliance,
which range from simple disagreements to protracted legal
battles [5], [6].

Software reliability traditionally denotes software’s capabil-
ity to run as anticipated under predetermined conditions for a
specified duration. This field, encompassing risk management
throughout the software lifecycle, faces new challenges due to
the complexities of modern software supply chains [7]–[11].
Increasingly, open-source security incidents and compliance
issues arise from the extensive incorporation of third-party
dependencies and open-source licenses, posing threats to sus-
tainable open-source development [12], [13]. As a reliability
engineering component, open-source license compliance can
enhance open-source software’s resilience, underscoring the
need for practical license compatibility tools. Recent research
has thus aimed at creating accurate and efficient mechanisms
to face these compliance challenges.

License compatibility checking includes two main steps:
identifying the license used in a project [14], [15] and as-
sessing its compatibility [16]. Historically, most research has
focused on a limited set of widely-used licenses, relying on
predefined compatibility outcomes [17], [18]. Recent advance-
ments have automated the compatibility analysis by treating
licenses as a collection of legal terms [19]. For instance,
LiDetector has significantly improved the handling of custom
licenses by automating the extraction of legal terms. Despite
these advancements, the ability to fully capture the meanings
of complex and ambiguous legal terms remains limited [20].
The compatibility of licenses can significantly vary based on
the usage scenarios of the authorized works. Prior research has
often been limited by assumptions within specific scenarios,
such as specific software development or distribution models,
which hinders the derivation of precise compatibility conclu-
sions from the employed software components.



To solve the above problems, our research starts with an
empirical study focusing on large-scale complex open-source
software in terms of license compatibility. Specifically, we
attempt to answer the following questions:

① What gaps and challenges exist between existing license
compatibility tools and actual license compatibility de-
tection?

② How can a license compatibility checking tool be adapted
to complex scenarios, such as large open-source software
with multi-programming language?

This paper draws inspiration from prevalent issues and
methodologies in compatibility analysis. We have refined the
existing compatibility analysis model to address the complex-
ity of determining license compatibility across diverse scenar-
ios. Our comprehensive approach encompasses the following
components:

• Scope Representation of License Terms (SRLT): This
novel method models the effective scope of license terms,
especially under ambiguous declarations. SRLT aids in
the efficient management of various scenario-specific
license exceptions.

• Compatibility Reasoning Analysis: Leveraging SRLT
and a redefined concept of compatibility, our method
automatically constructs a compatibility knowledge graph
for any given SRLT set of a license. This graph serves
as a valuable tool for subsequent detection in different
scenarios.

• Scenarios Sniffer and Detection Module: The sniffer
senses usage scenarios from projects and verifies whether
they satisfy compatible conditions. Later, the detection
Module evaluates the project’s compatibility according to
the compatibility knowledge graph and usage scenarios.

The primary contributions of this paper are as follows:
1. Our extensive empirical studies on license exceptions un-

cover a major challenge in license compatibility analysis:
sufficient modeling of usage scenarios. We show that a
detailed examination of license exceptions is possible and
valuable.

2. Based on our findings, we introduce a new representation
called “Scope Representation of License Terms” to cap-
ture legal terminology and reasoning about license com-
patibility. This method accurately models the complex
conditions that determine license term applicability.

3. We have developed LiScopeLens, a tool to detect de-
pendency behaviors and conduct thorough compatibility
checks for C/C++ usage scenarios. This work has been
made open-source1.

II. BACKGROUND

A. open-source License

An open-source license grants the rights to use, modify,
and distribute software, along with specific obligations and
restrictions. The Linux Foundation lists over 700 licenses, each

1https://gitee.com/openharmony-sig/compliance license compatibility/

uniquely identified by a with an unique Software Package Data
Exchange (SPDX) identifier, which is a key component of the
SPDX specification designed to help distinguish every license.
In this paper, we refer to licenses by their SPDX identifiers.

Software licenses can be classified based on their location
within a project:

• Project License: These licenses, defined by the authors or
maintainers, are located in LICENSE files or equivalent
documentation at the project’s root.

• File License: Licenses within a project’s code files.
Another classification is based on the method of declaration:
• Embedded License: The license text is directly embed-

ded within the source code. Common examples include
MIT and BSD-family licenses.

• Referencing License: This license type includes a link to
the original license text, authorizing code use. A common
example is the GPL license.

Regarding restriction levels, open-source licenses are cate-
gorized as either Permissive or Copyleft [21]. Copyleft licenses
prevent the software from being proprietary, whereas Permis-
sive licenses do not. Platforms such as tldrlegal2, chooseli-
cense3, and Openeuler [22] represent licenses through acces-
sible terms like Commercial Use, Same License, and Patent
Use, thus lowering barriers to understanding for developers
and facilitating automated analysis. However, the complexity
of these terms limits the effectiveness of detailed automated
analysis. In addition, the coexistence of multiple and custom
licenses within projects also complicates their management.

B. Conflicts in open-source License

According to previous work, the compatibility of open
source licenses is determined: if license la is compatible with
license lb, then lb may be combined or relicensed without
breaching the terms of la. If not, then li and lj are deemed to
be in conflict [23], [24]. Typically, Permissive licenses can be
compatible with stricter ones [25], [26]. However, this is only
sometimes the case. For example, although lb may be more
restrictive than la and confer no extra rights, specific licenses,
such as GPL-2.0 and GPL-3.0, may still be incompatible.
Identifying license conflicts requires substantial legal expertise
to achieve reliable outcomes.

In enhancing security compliance within the open-source
software supply chain, automated tools for detecting license
compatibility have become increasingly necessary. Previous
works have combined expert knowledge with license detection
tools to determine compatibility [12], [27], but the license
exceptions and the customization of licenses compromise their
reliability. Recent developments [16], [20], [28] have leveraged
structured license data to enhance these tools’ analytical ca-
pabilities. However, the limited granularity of the constructed
data and insufficient depth in exploring compatibility scenarios
lead to these tools often missing the detection of potential
conflicts that do not surface explicitly [29]–[31].

2https://tldrlegal.com/
3https://choosealicense.com/



C. Motivating Examples

In this study, we examine the persistent challenges of com-
pliance in large open-source environments. Current methods
for analyzing software licenses fail to identify compatibility
issues across various usage scenarios accurately. For example,
is there a need for compatibility assessment across different
projects? What interoperability methods make license compat-
ibility assessments necessary when file-level and project-level
licenses coexist? Following a systematic license analysis, we
engaged with legal experts from the open-source community
to address compatibility governance. This collaboration helped
us identify examples demonstrating the difficulties in current
compatibility analysis and why existing tools are not practi-
cally useful.

1) Exception Terms and Custom License: License incom-
patibility is complex due to varied legal rules and scenarios and
because these provisions evolve over time. Users frequently
alter licenses, either by appending conditions to restrictive
ones or crafting new ones, to safeguard their rights and
clarify legal uncertainties. Such modifications can significantly
impact compatibility with other licenses. The presence of
exception clauses and custom licenses makes it impossible to
develop universally applicable compatibility tools based solely
on empirical data. Previous studies, such as [16], [20], [28],
focused on semi-structured license clause features but did not
systematically address these exceptions and custom clauses.

2) Automated Reasoning for Compatibility: Due to ex-
ception clauses and custom licenses, dynamic compatibility
reasoning is essential for automated analysis. The structured
license description methodology can accurately determine
compatibility between two licenses based on a set of char-
acteristics encompassing rights, obligations, and constraints.
Despite significant efforts in license compatibility research,
achieving reliable automated reasoning from structured li-
censes remains challenging. In the industry, organizations like
CreativeCommons4, SPDX5, and openeuler [22] have taken
significant steps to structure license descriptions. However, a
fully effective structured scheme for automated compatibility
reasoning has not been established under the nuances of
license compatibility. For example, limitation by structured
granularity and reasoning rules, the compatibility detection
tool by Xu et al. [20] fails to recognize conflicts caused by
the cc-by-nd-4.0 license.

3) License Conditional Compatibility: License compatibil-
ity is inherently directional and may exhibit what we term
“conditional compatibility.” Directional compatibility often
indicates potential conflicts between licenses, which usually
arise in one license or can be mitigated under certain con-
ditions. For instance, a project under Apache-2.0 can only
incorporate LGPL-2.1-only licensed work through dynamic
linking due to the former’s patent licensing and termination
clauses, which otherwise conflict with LGPL’s commitment
to software freedom. Additionally, the compatibility of a

4https://wiki.creativecommons.org/wiki/License RDF
5https://github.com/spdx/license-list-data

license may vary based on the project type. For example,
C/C++ projects, which bundle different licenses in binary
distributions, are more prone to compatibility issues than
Python projects. Therefore, assessing license conflicts requires
consideration of the specific usage context. Current literature
and tools often provide an ambiguous definition of license
compatibility, and it is necessary to address its conditional and
directional nature systematically. The osdal-matrix’s findings
[32] illustrate directional compatibility differences but need
more practical application for real-world assessment.

In conclusion, it is essential to comprehend the nuances of
license compatibility across diverse usage scenarios to develop
practical license compatibility testing tools.

III. EMPIRICAL STUDY

A. Reseach Questions

This empirical study aims to comprehend the limitation
of prior knowledge of license compatibility and leverage
license exceptions to explore the impact of usage scenarios.
Most current detection tools rely, in particular, on preexisting
knowledge of license compatibility. We seek to assess whether
these preexisting conclusions adequately support practical sce-
nario detections, pinpoint the license compatibilities needing
manual intervention, and determine the number of license
combinations identifiable via automated methods based on
current understanding. To this end, we present the following
research questions centered around license exceptions:

• RQ1: Are the conclusions drawn about license compat-
ibility adequately usable in practice? Additionally, are
there established mechanisms for managing exceptions
to these licenses?

• RQ2: How common are exception clauses in the wider
open-source community and large-scale open-source sys-
tem projects?

• RQ3: What proportion of real-world license exception
compatibility issues could theoretically be identified by
automated methods?

B. Study Objects

For RQ1, we conducted a comparative analysis of existing
resources, including Openeuler’s compatibility table6, LCV-
CM [18], and OSADL-matrix [32]. We evaluated their usabil-
ity primarily based on their ability to account for conditional
compatibility, such as the LGPL-2.1-only license under dy-
namic linking conditions. Additionally, we examined whether
these resources consider various usage scenarios, including
different programming languages and distribution methods.

In addressing RQ2, we engage with the OpenHarmony7

project and a large dataset from Software Heritage [33] to
survey and analyze the prevalence and types of exception
licenses. We rely on Software Heritage for direct provision
of scancode [34] results. For OpenHarmony, we utilize the

6https://compliance.openeuler.org/compatiableTable
7https://www.openharmony.cn/



scancode tool to conduct a detailed license analysis across its
entire codebase and selected projects.

For RQ3, we focus on 66 specific exception licenses listed
by the SPDX organization, exploring whether their exception
conditions can be automatically detected. This task is per-
formed in collaboration with legal experts and active members
of the open-source community.

C. Methods and Results

Fig. 1. Heatmap of inconsistent distribution of license compatibility.

1) RQ1: In our study, we evaluated the compatibility of
120 licenses and identified conflicts in 40 of them. The Fig
1 illustrates our findings: The horizontal and vertical axes in
the figure represent licenses, with black blocks indicating in-
consistent prior knowledge of license compatibility among the
three research objects and light blocks indicating consistency.
We discovered identified inconsistencies in 496 out of 14,280
possible license combinations. Notably, 4,450 combinations
were excluded due to the lack of relevant prior knowledge on
the part of a specific research subject.

In addition to these inconsistencies, the discussion on
licenses with scenario-dependent compatibility needs to be
revised. Conclusions drawn from narrowly defined scenarios
frequently offer limited utility. For instance, advice for com-
binations like lcv-cm and osdal-matrix is vaguely summarized
as ‘Check dependency.’ In contrast, while Openeular’s inves-
tigation into 48 licenses, considering source code and library
interoperability, yields specific compatibility conclusions, it
overlooks a systematic examination of license exceptions.

2) RQ2: To improve our understanding of the license ex-
ceptions in real-world cases, we conducted a detailed analysis
of large open-source systems like OpenHarmony. We used
Scancode, a renowned license scanning tool, to track and
evaluate the distribution of licenses, focusing on those with
exception clauses and potential incompatibilities.

TABLE I
THE LICENSE EXCEPTION DISTRIBUTION STATISTICS

Data Sources Licenses Exceptions Non-standard
ExceptionsTotal Type Total Type

OpenHarmony 13819 135 190 20 196
Software Heritage 7503060 1573 66800 130 302044

This study analyzed 972 repositories within the OpenHar-
mony open-source community, focusing on the distribution of
open-source licenses. The findings, detailed in Table I, reveal
the frequency of standard licenses and exceptions. In addi-
tion, our analysis extends to non-standard license exceptions,
identifying their occurrence in the dataset. In OpenHarmony’s
repository, standard license exceptions constitute 1.37% of
all licensed documents, a figure that drops to 0.89% in the
broader software heritage dataset. When accounting for non-
standard exceptions, these numbers increase to 2.79% and
4.92%, respectively. This variation reflects the differing license
restrictions and the scope of repositories analyzed.

During the extended development and maintenance phases
of large systems, the complexity of system components can
increase, particularly as they adapt to new requirements and
technologies. Despite the low frequency, license exceptions
pose significant challenges. For example, in systems developed
with C/C++ or similar languages, the compiled binaries, linked
from various source codes, inherit the licensing constraints of
these sources. Tools that check compatibility may likely flag or
report conflicts, such as the coexistence of LGPL-2.1-only and
Apache-2.0 licenses, unless the tool overlooks the file license.
Developers then manually verify each of these conflicts, which
is labor-intensive.

Exploring RQ1 and RQ2, we discovered that compatibil-
ity assessments typically neglect license exceptions, causing
inconsistent findings across identical license combinations
and reducing their applicability in practical scenarios. Further
research indicates that despite the relative rarity of license
exceptions, the occurrence of license exceptions introduces
substantial governance difficulties, significantly hindering ef-
forts to enforce license compliance.

3) RQ3: License exceptions typically arise from specific
changes in the rights and obligations granted by a license
under certain conditions and are crucial in the final step of
license compatibility analysis. Identifying these exceptions
and their trigger conditions enables the development of tools
that effectively meet real-world needs. Among the 66 license
exceptions listed by SPDX, we collaborated with legal ex-
perts to analyze their clauses. Our goal was to ascertain
the feasibility of automatically detecting the conditions for
these license exceptions. The criterion for our analysis was
whether the trigger condition in license exception terms could
be extracted solely from the work. Our findings indicate that
64 out of the 66 exceptions have identifiable conditions despite
some being vaguely defined. Interestingly, understanding these
vague conditions requires little legal knowledge.



TABLE II
COMPREHENSIVE COMPILATION AND CATEGORIZATION OF LICENSE EXCEPTIONS

Exception Type Licenses SPDX ID Effective Conditions Base License

Exception
Relicense

CLISP-exception-2.0 Packages not part of CLISP GPL-2.0

GCC-exception-2.0, GCC-exception-2.0-note,
GNOME-examples-exception, eCos-exception-2.0,
GCC-exception-3.1

Specified file GPL-2.0

Autoconf-exception-macro, Autoconf-exception-2.0,
Autoconf-exception-3.0, Bison-exception-1.24

Program Output GPL-2.0

Font-exception-2.0 Font GPL-2.0

FLTK-exception Subclassed from FLTK widgets LGPL-2.0

389-exception, GPL-3.0-interface-exception, freertos-
exception-2.0, u-boot-exception-2.0

Approved Interfaces Various

PS-or-PDF-font-exception-20170817 Postscript AGPL-3.0

Bison-exception-2.2 Combined work GPL-2.0

Bootloader-exception, LZMA-exception, mif-exception,
GPL-3.0-linking-source-exception, Classpath-exception-
2.0, GNU-compiler-exception, gnu-javamail-exception,
GNAT-exception

Dynamic/Static linking GPL-2.0

Swift-exception Compile/embed Apache-2.0

freertos-exception-2.0 FreeRTOS communication GPL-2.0

Exception
Compatible

cryptsetup-OpenSSL-exception,
x11vnc-openssl-exception

OpenSSL GPL-2.0

GStreamer-exception-2008, GStreamer-exception-2005 GStreamer plugins GPL-2.0

Gmsh-exception Specified combined code GPL-2.0

In our analysis, we classified license exceptions into four
categories, acknowledging that these categories are not strictly
separate; exceptions may serve multiple functions simultane-
ously:

1. Exception Relicense: This category involves changes
to the rights, obligations, or restrictions under specific
conditions. These changes may affect one or several
clauses of the original license.

2. Exception Remediating: These exceptions address re-
medial actions following significant license violations,
aiming to prevent disputes from escalating into legal
actions.

3. Exception Compatible: The licensed work can be com-
patible with a particular type of work, a specific license,
or a named project in this type of exception.

4. Exception Refine: Focuses on clarifying the original
license to mitigate compliance risks due to ambiguous
terms.

In addition, our analysis extends beyond classification to a
detailed examination of 35 excluded clauses and their respec-
tive exception conditions, presented in Table II. Base License
refers to the original license affected by these exceptions. The
Effective Conditions column shows the trigger conditions
of the exception. Critical conditions include Specified File,
activating the Exception for specific file interactions; Program
Output, for exceptions triggered by program output; Approved
Interfaces, for interaction via specified interfaces; and Dy-

namic and Static Link, for exceptions applied during dynamic
or static linking.

In answering RQ3, we found that key information for
identifying compatibility issues, such as clauses affecting
compatibility under certain conditions, is mainly found in
source code, configuration files, or the status of objects during
compatibility checks. Coupled with our RQ2 findings, this
underscores a significant problem: License exceptions and
license authorization work in different usage methods will
directly affect the compatibility of the license. Unfortunately,
previous research did not fully consider these problems.

IV. RESEARCH METHOD

A. Notations

This paper presents a formal framework to describe the
structure and implications of software licenses, defining key
notations as show in Table III.

B. Problem Statements

According to RQ2 and RQ3, licenses exhibit varying com-
patibility based on different usage scenarios. The customiza-
tion and exceptions within licenses make using a license as
the smallest unit for compatibility analysis impractical. Thus,
license compatibility tools must be capable of automatically
inferring compatibility with other licenses under various usage
scenarios by analyzing a collection of license terms char-
acteristics. A knowledge base that includes scenario-specific
compatibility findings is crucial for developing tools that adapt



TABLE III
SUMMARY OF NOTATIONS

Symbol Description

tk A single license term.

la A license represented by a set of terms
{ta1 , ta2 , . . . , tan}.

Tcan Category of authorization terms.

Tnot Category of prohibition terms.

Tmust Category of obligation terms.

Tspecial Category of special terms introduced in this study.

tk∈Tcan Expression indicating tk is an authorization term.

(la,lb) Direct, unconditional compatibility between la and lb.

⟨la, lb, Sa⟩ Conditional compatibility based on satisfying Sa.

Gp = ⟨V,E⟩ Gp represents the project, nodes V may include source
code and dependency libraries, and edges E represent
the interoperability of nodes.

to various usage scenarios. Such detailed analysis not only
aids in current compatibility assessments but also prepares the
framework to accommodate new licenses and exceptions.

To address the above issues, we propose a new definition of
compatibility that more accurately reflects various scenarios.
We have refined our understanding of license compatibility,
conflict, and condition compatibility as follows:

Definition 1: License la is unconditionally compatible with
lb if no conflict exists between their terms.

Remark 1: Traditional compatibility definitions confuse the
conflict between license terms and compatibility in specific
usage scenarios, meaning one-way compatible licenses often
have conflicts in terms. At the same time, they may be
compatible with specific usage scenarios. Considering actual
usage or distribution, any one-way compatible licenses can
lead to compliance problems. It is easy to prove that the un-
conditional compatibility relationship defined in this article has
no direction, which means that the license for unconditional
compatibility does not have any legal conflicts in any scenario.

Definition 2: License la is conditionally compatible with lb
if la conflicts with lb but the conflict can be avoided under
specific conditions.

Remark 2: According to conditional compatibility, all con-
flicting licenses must have a defined, non-empty resolution
scope to avoid actual conflict, rendering them conditionally
compatible. If multiple clauses conflict, conditional compat-
ibility is achievable only if there is a non-empty intersec-
tion among all resolution scopes. In such cases, the derived
conditions represent the overlapping scope. Ideally, the differ-
ences in license terms for various usage scenarios should be
indicated on the directed edges of conditional compatibility,

ensuring that conclusions about license term compatibility are
applicable in practical scenarios.

Definition 3: If License la is incompatible with License
lb, then conflicts between la and lb cannot be avoided for
work authorized under la.

Remark 3: Under this definition, a set of licenses is in-
compatible if conflicts arise in all interactions among them.
Conversely, any condition allowing for compatibility suggests
potential compatibility within the set.

Finally, to analyze license compatibility in complex scenar-
ios, the process can be defined as follows:

• Input: A code repository P , including its file directory
structure and dependency graph Gp = ⟨V,E⟩.

• Output: A conflict graph GI illustrates the relationships
between incompatible licenses in the repository.

C. Approach Overview

The empirical studies in section III highlight three main
challenges in license compatibility:

• Different licenses demonstrate diverse compatibility char-
acteristics depending on the programming language and
dependency behavior.

• License exceptions commonly not considered by conven-
tional compatibility checking tools modify the fundamen-
tal nature of license compatibility.

• Existing structured approaches fail to incorporate specific
usage scenarios and exception clauses, resulting in flawed
compatibility judgments.

To bridge these gaps, this study proposes LiScopeLens, a
novel license compatibility checking method that includes:

1. A model for representing license terms scopes (SRLT);
2. SRLT-based inference rules and a compatibility knowl-

edge graph tailored to usage scenarios;
3. A scenario sniffer module and a project-specific license

compatibility checker operate under defined compatibility
conditions.

The LiScopeLens workflow, depicted in Fig 2, starts by
gathering structured SRLT data to analyze the scope of
terms for licenses la and lb, determining if conflicts can be
preventively avoided. The compatibility reasoning module uses
this data to infer compatibility, illustrated through the rela-
tionships among license nodes, where the relationships store
the conditions for compatibility. The scenarios sniffer checks
for compliance with the predefined conditions in the code
repository. The final step involves the license compatibility
checker, which combines information from the behavior sensor
and the knowledge graph to confirm the presence or absence
of conflicts.

1) Scope Representation of License Terms: We introduce
a new feature representation method named Scope Represen-
tation of License Terms (SRLT), which builds on structured
information from licenses to ensure accurate compatibility of
conditions at the term level. During the compatibility analysis,



Fig. 2. LiScopeLens: compatibility detection method logical overview.

SRLT advances previous structural approaches by precisely
defining the scope of license conflicts and examining potential
conflicts beyond this scope.

Determining the effective scope is challenging due to its
dependence on specific definitions and statements within the
license terms. In practice, many license terms are unclear
and do not encompass all potential scenarios, often requiring
subjective explanation by experts. This paper introduces the
SRLT method, simplifying the effective scope into applica-
tion scope and out of application scope. Specifically, the
scope of a license term can be formally defined using the
formula S(t) = A(t) ∩ O(t), where A(t) includes scenarios
covered by the license and O(t) includes excluded scenarios.
The terms are effective when the authorized work falls within
A(t) but not O(t). Conflicts between A(t) and O(t), indicating
overlapping definitions, are beyond this discussion’s scope.

The distinction between A(t) and O(t) effectively resolves
ambiguities in many license terms. For instance, consider a
license term tk within license la, where the scope is unclear
and the O(t) is not specified. In such cases, A(tak) = U and
O(l) = ∅, indicating that all conditions are considered within
the scope. This setting aligns the effective scope of SRLT with
conventional structuring schemes, maintaining consistency
even when expert validation is absent, ensuring that outcomes
do not deviate from established methods. Conversely, for a
term tk in license lb that explicitly excludes ‘dynamic linking,’
we define A(tbk) = U and O(tbk) = {‘dynamic linking’}. To
determine the overlap in scope between licenses la and lb for
tk, one should calculate S(tak)∩S(tbk), simplifying to S(tbk). If
tak is permitted under la but not under lb, it signifies a conflict
but also indicates a potential for conditional compatibility,
depicted as ⟨lb, la, tbk⟩.

The functions A(t) and O(t) clarify the effective scope of

license terms and enhance the granularity of term expressions,
facilitating compatibility assessments based on standard rules.
Compatibility is determined by whether the effective scopes
overlap. The calculations for scope compatibility, as shown in
Equation 1, are performed separately for the sets A(t) and
O(t). For intersecting scopes, the computation is:

S(tak) ∩ S(tbk) = (A(tak) ∩O(tak)) ∩ (A(tbk) ∩O(tbk))

= (A(tak) ∩A(tbk)) ∩O(tak) ∪O(tbk)
(1)

We can convert the outcome of Equation 1 into the standard
S(t) format, but this method fails with set unions or subtrac-
tions. A binary relationship format resolves these problems by
representing the S(t) as a set of binary ordered pairs:

S(tk) = A(tk)×O(tk)

= {< x, y >| x ∈ A(tk) ∧ y ̸∈ O(tk)}
(2)

For any clause tk, the intersection and negation operations
are defined as follows in its effective range S(tk):

S(tk) = {< x, y >| x ̸∈ A(tk) ∨ y ∈ O(tk)}
= U ×A(tk) +O(tk))× ∅

(3)

S(tak) ∩ S(tbk) = {< x, y >| x ∈
(A(tak) ∩A(tbk)) ∧ y ̸∈ (O(tak) ∪O(tbk))}

(4)

In addition, S(tk) also has the following properties to ensure
the simplicity of the final calculation result:

Anti-reflexivity: For ∀ < x, y > if x = y then <
x, y ≯∈ S(tk). According to the definition, the area where
A(t) and S(t) intersect is meaningless. There is also an
extend ∀x∀y ¬(⟨x, y⟩ ∈ R ∧ ⟨y, x⟩ ∈ R), which means
that the intersection of two opposite valid ranges creates a
contradiction and is meaningless.

2) Compatibility reasoning based on SRLT: SRLT provides
essential information support for defining the effective scope
of terms necessary to develop compatibility tools with scenario
judgment capabilities. Subsequently, we introduce automated
compatibility reasoning rules based on SRLT and new com-
patibility definitions. SRLT not only vertically refines the
existing structured clause framework to enhance the analysis
of complex license terms but also horizontally expands this
framework. This expansion is evident in two main areas:

1. Beyond the basic CAN, CANNOT, and MUST categories,
we introduce special clause features to address various
exceptions.

2. We are the first to consider how individual clauses
manifest different compatibility phenomena depending on
their categories during the compatibility analysis.

This study introduces the fourth category Tspecial, which
primarily handles exceptions and exhibits two distinct char-
acteristics:

Triggering: Certain terms or restrictions, which become
effective under specific conditions, can impose corresponding



Fig. 3. LiScopeLens: Compatibility reasoning based on SRLT overview.

constraints once triggered. These clauses enhance compatibil-
ity in licenses with restrictive requirements. For instance, un-
like in earlier versions, the GPL-3.0-only license has become
compatible with Apache-2.0 due to such clauses.

Relicense: Triggering specific terms can effectively reau-
thorize the original license with new characteristics, e.g.,
classpath-exception-2.0, which, under specific conditions,
gives up all rights and obligations of the original license. It is
important to note that ‘relicense’ implies that the work, when
used under the defined conditions, should be considered for
compatibility under a new license. However, it does not alter
the original license’s terms.

We further categorize the characteristics of SRLT terms
itself as follows:

Compliance Requirement: When a clause tk in la requires
that lb imposes specific rights, obligations, or restrictions on
a designated object that must be a subset of another corre-
sponding set of clauses in la, we say that tk has a compliance
requirement. The “cannot impose further restriction” feature is
an instance of this compliance requirement that prior studies
have not considered.

Immutability: This attribute applies to licenses that restrict
any alteration of the work to all extents. The “Cannot” clause
collection flags the “modify” action when it is present.

Extending from the above structural features, the pseu-
docode for the inference rule is shown in Algorithm 1.

In our approach, we assess the compatibility of licenses,
each characterized by a set of SRLT features, through pairwise
comparison within the license set. The compatibility analysis
is structured into four sequential stages as depicted in Fig 3.
Initially, we identify any immutable licenses deemed incom-
patible with all others. If there is no immutability, we proceed
to the compliance requirement check. This involves verifying
if a license la mandates inclusion of its action set of type T
by another license lb, checking S(Ta) ⊇ S(Tb). Failure to
meet this criterion results in a declaration of incompatibility;
otherwise, the analysis advances to the routine inspection. The
core of this inspection is to evaluate potential conflicts between
the rights and obligations specified by one license and the
restrictions imposed by another. Unresolvable conflicts lead to

Algorithm 1: Reasoning license compatibility based
on SRLT
Input: License set L = {l1, l2, . . . , ln}
Output: Compatibility graph G

1 Procedure InferCompatiblityGraph(L):
2 Initialize an empty graph G;
3 Initialize an empty array Exceptions;
4 for la, lb ∈ Product(L,L) do

// Product is the Cartesian
product of a set

5 Scondition ← ∅, f lag ← false;
6 if la = lb then continue;
7 if ∃t = relicense, t ∈ Tspecial(la) then
8 Insert (la, lb) into Exceptions;

// Special terms are handled
last as callbacks.

9 if ∃t = modify, t ∈ Tnot(l) and t ∈ Tcan(l
′)

then
10 if S(t) ∩ S(t′) ̸= ∅ then continue;

// Using l and l′ indicate the
process is bidirectional.

11 if ∃t = restrict, t ∈ l then
12 Tt ← t;
13 if Tt(l

′) not meet compliance of Tt(l) then
14 Incompatible

// Using l and l′ indicate the
process is bidirectional.

15 for (taj , t
b
k) ∈All conflicting terms pairs do

16 Sconflict ← S(taj ) ∩ S(tbk);
17 if Sconflict = U then
18 flag ← true, Scondition ← ∅;
19 break;
20 else if Sconflict = ∅ then continue;
21 else
22 Scondition∪ = (S(taj ) ∩ Sconflict);

23 if flag = false then
24 Insert edge (la, lb) in G;

// Unconditional compatible.
25 else if Scondition ̸= ∅ and flag = true then
26 Insert edge ⟨la, lb, Scondition⟩ in G;

// Conditional compatible.

27 for la, lb ∈ Exceptions do
28 tgts← relicense terms tai target from la;
29 for tg ∈ tgts do
30 if ⟨tg, lb, S′⟩ ∈ G or ⟨lb, tg, S′⟩ ∈ G then
31 if S′ ∩ S(tia) ̸= ∅ then
32 Insert edge ⟨la, lb, S′ ∩ S(tia)⟩ in G;

// Handling terms in licenses that
enforce the utilization of
distinct legal features.

33 return G;



a finding of incompatibility.
In addition, special license terms are managed through a

callback-like approach. When a usage scenario triggers special
terms, the tool considers the license authorized under a new
one, thus changing its compatible status. Our inference algo-
rithms delay compatibility determinations for these instances
until all standard cases have been reviewed. If a license la
featuring a relicense clause is either incompatible with lb or
meets specific conditions for compatibility, we assess their
compatibility based on the relationship between the relicense
target of la and lb. The critical factor is the intersection (S′)
between the relicense’s applicable range and lb’s scope. An
intersection that is not empty indicates compatibility, serving
as the criterion for this assessment.

3) Target Sniffer and Compatibility checker: After creat-
ing the license compatibility graph, we identify all potential
compatibility conditions based on the licenses’ terms. We
use parsers and sniffers to analyze usage scenarios, aligning
essential license conditions with their compatible counterparts.
This alignment helps verify if a license combination meets
the required compatibility criteria. For instance, in low-level
programming languages that involve binary distributions, we
deploy sniffers to understand usage patterns. The initial set
of sniffers identifies target files and their licenses in the code
repository. A subsequent set analyzes compiled configurations
to map source code to binary files. Additional sniffers may
be employed to examine dependencies and linkage behaviors.
This gathered data feeds into a compatibility check module,
which then assesses the compatibility of licenses in the given
scenario.

Fig. 4. LiScopeLens: Sniffer aware usage scenario workflow diagram.

We choose C/C++ as an example to explain how LiScope-
Lens works. Since C/C++ does not have practical package-
level management tools and may have binaries with multiple
licenses, it needs effective license analysis tools. The approach
is detailed in the pseudocode 2.

D. Evaluation

1) Compatibility reasoning based on SRLT: The core of
this research is the automation of reasoning processes using
the novel license’s structured data SRLT, aimed at refining the
license compatibility knowledge graph for complex usage con-
texts. This method’s validity was evaluated through a manual

Algorithm 2: Check license compatibility
Input: Project dependency graph Gp, Compatibility

knowledge graph Gc

Output: Processed graph GI

1 Procedure CheckCompatibility(Gp, Gc):
2 Lsub ← ∅;
3 GI ← an empty graph;
4 Gdep ← Extract dependency subgraph from Gp;
5 for vi in reverse topological sort Gdep do
6 Pi ← get parents from vi;
7 Ci ← get children from vi;
8 for [va, vb] ∈ Combination({vi} ∪ Ci) do
9 conda ← Obtain (vi, va) from Gdep;

10 condb ← Obtain (vi, vb) from Gdep;
11 La ← licenses from va;
12 Lb ← licenses from vb;
13 for [la, lb] in Product(La, Lb) do
14 ca∧ = Query compatibility for

(la, lb, conda);
15 cb∧ = Query compatibility for

(lb, la, condb);

16 Insert edge ⟨lb, la, ca ∨ cb⟩ in GI ;

17 Li ← licenses from vi;
18 for vj in Ci do
19 Lj ← the licenses spread to vi;
20 Li ← Li ∨ Lj ;

// Update Li, e.g., copyleft
license or usage scenario
spread to parent nodes

21 return GI ;

examination of 17 licenses employing the SRLT framework,
followed by the application of rule-based reasoning (outlined
in Algorithm 1), with the findings depicted in Fig 5. The
horizontal axis denotes the initial license, while the vertical
axis represents the final license. This setup aims to assess
compatibility between the originating and concluding licenses.
Specifically, red points (value of 2) signal incompatibility,
gray points (value of 1) suggest conditional compatibility
and yellow points (value of 0) denote full compatibility. As
discussed in Section III, license compatibility does not have a
one-size-fits-all answer due to varying underlying assumptions
for different works. SRLT aims to mitigate such issues. The
OSADL license compatibility matrix shows that LGPL-2.1-
only and Apache-2.0 are mutually incompatible. However,
our study finds no conflict under conditions of “dynamic
linking” between LGPL-2.1-only licensed works and Apache-
2.0, illustrating conditional compatible, as seen in the real-
world case of a more permissive link exception [35].

Additionally, this study incorporates findings from tldrlegal
[36], extending our license analysis to 113 licenses. We
applied the SRLT modeling and inference techniques to create



Fig. 5. Heat map of compatibility inference for licenses after manual
processing.

TABLE IV
COMPARISON OF COMPATIBILITY BETWEEN EXISTING WORK

OSADL Openeuler

Compatible-Incompatible 661 538
Incompatible-Compatible 28 16
Condition-Compatible 9 1
Condition-Incompatible 15 14

Total Compared 2105 1126
Inconsistencies 713 571

a larger-scale compatible knowledge graph, comparing our
results with those from OSADL and Openeuler in Table IV.
Our analysis reveals significant differences from traditional
conclusions, especially regarding license compatibility. Unlike
the OSADL, which finds many license combinations incom-
patible, our method deems them unconditionally compatible.

Upon examining these differences, we identified two pri-
mary sources of error. First, despite tldrlegal’s structured in-
formation being generally accurate, it sometimes deviates from
our base data. Second, the discrepancies largely stem from how
our method and traditional approaches define compatibility.
Our method only analyzes license conflicts based on license
terms, removing the confusion between usage scenarios and
term conflicts. It models the effective scope of different terms
through the SRLT to obtain a compatibility knowledge base
with usage scenario requirements in automated inference.

TABLE V
RESULTS FOR INCOMPATIBILITY DETECTION.

Method Projects Incompatibilities FP Time Cost

LiDetector 215 15 15(100.0%) 93.42(s)
LiScopeLens - 10 2(20.0%) 36.49(s)

2) License compatibility testing performance: In this evalu-
ation, we sought to validate that LiScopeLens is a potentially
powerful tool for managing real-world cases’ intricate com-
patibility testing needs. We chose the OpenHarmony 5.0 beta,
an emerging open-source operating system project, to evalu-
ate the detection capabilities of textbfLiScopeLens. We then
compared our tools with the impressive work of LiDetector
[20]. The results are presented in Table V. The difference in
the number of projects is that LiDetector can only perform
license compatibility checks on a project-by-project basis, so
we had to split the OpenHarmony 5.0 beta complete code
into 215 project modules. The tool proposed in this article
processes licenses at the file level, so there is no need for such
a division. LiDetector identified 15 license incompatibility
issues, but upon our manual verification, we discovered that
all 15 were false positives. The tool we proposed in this paper
reported 10 types of conflicts, and through manual simulation,
we found that 2 were false positives. Furthermore, we analyzed
the time costs of the two tools during the compatibility check
process and established that LiScope Lens operates 62.87%
faster than its predecessor. It is worth noting that this practical
cost does not include the process of license scanning, and the
time cost results of LiScopeLens also account for compatibility
inference.

E. Case Study

1) License Compatibility Prior Knowledge: We analyzed
many inconsistent results to identify the sources of these
differences.

• Structural Information Errors: Ambiguities in tldrle-
gal’s structural data contribute to uncertain compatibility
inferences. For instance, the Unlicense is listed with
contradictory permissions regarding liability, attributed to
the automated parsing of terms like “released into the
public domain” [37]. Such discrepancies highlight the
challenges of machine interpretation of license terms.

• Compatibility Definition Inconsistencies: Our compat-
ibility analysis focuses on potential conflicts in license
combinations, diverging from methods that consider in-
tegrating works under different licenses. For example,
although CDDL-1.0 and curl licenses do not directly con-
flict, the former’s greater restrictions dictate the licensing
terms for combined works. This distinction underscores
our belief that issues of outbound licensing should not be
conflated with compatibility concerns, a topic we plan to
explore further.

• Concluding Errors in Other Analyses: Misinterpreta-
tions in other studies, such as the deemed incompatibility
between MPL-2.0 and GPL-2.0 by OSADL, underscore
the importance of our work. Despite claims of incom-
patibility, evidence shows MPL-2.0 licenses can be fully
incompatible [38], highlighting the need for reassessment
in license compatibility analysis.

2) Compatibility Detection: We have analyzed a large num-
ber of cases in license compatibility detection and summarized
some typical problems:



• Complex usage scenarios: The complexity of code usage
scenarios is a significant challenge: LiDetector strives
to categorize licenses into project-level and file-level
types, yet it overlooks extensive projects with numerous
sub-projects. Furthermore, due to their construction or
distribution techniques, these large-scale projects have
induced interactions between previously isolated projects
or components. These disregarded aspects significantly
contribute to the underreporting by license compatibility
detection tools.

• Complex compatibility of terms: As for license compat-
ibility, prior knowledge, its accuracy, and the granularity
of its modeling are crucial determinants of a detection
tool’s capability. For instance, in the case of LiDetector,
all 15 false positives resulted from unforeseen errors in
the compatibility judgment rules for project-level and file-
level licenses.

V. RELATED WORK

A. License Identification

license compliance analysis often begins with the scanning
and identification of licenses. The presence of embedded and
referenced licenses complicates accurate retrieval. Previous
research has significantly contributed to this area, generally
falling into two categories: character-based and semantic-
based methods. Character-based methods, such as the approach
by Jaeger et al. in Fossology, utilize short seed regular expres-
sions and citation databases to identify licenses [19]. Tools
like Scancode [34] and Ninka [17] are notable examples. On
the other hand, semantic-based methods, exemplified by Wang
et al. [14], employ the LDA model and doc2vec for mining
potential topics and analyzing term similarity, respectively, to
identify license terms. Xu et al.’s work [20] advances this
approach by using natural language processing and training
models for finer recognition granularity. While semantic-based
methods show promise in detecting unknown licenses, their
effectiveness is enhanced when combined with character-based
methods, accommodating the complex real-world.

B. License Incompatibility Detection

The rapid growth of the open-source community has in-
creasingly led to the development of proprietary software
based on open-source foundations, highlighting the importance
of open-source compliance. Beyond the methods discussed
previously [20], [28], research has expanded into various
aspects of license incompatibility.

Paschalides et al. [39] utilized a license compatibility graph
and graph algorithms to identify potential incompatibility, but
neglected the subtleties of license condition compatibility.
Hemel et al. [40] introduced a binary code clone detection
technique to uncover software license volations. Makari et
al. [41] analyzed the prevalence and evolution of license
violations within npm and RubyGems dependency networks,
revealing that deep dependencies are less likely to cause
license incompatibilities compared to shallow ones, and that
GPL license issues are the primary source of incompatibility.

Higashi et al. [42] focused on license incompatibilities in
Docker images, employing Tern and Ninka tools to assess
software packages and licenses, finding that 58.9% of Docker
images exhibited license compatibility issues.

While these studies contribute significantly to our under-
standing of license compatibility, they largely omit the impact
of license exceptions and a systematic analysis of clause com-
patibility, which are crucial for a comprehensive understanding
of license compliance in the open-source ecosystem.

VI. CONCLUSION

This paper explores the complexities of open-source li-
censes within the context of sustainable open-source software
and community development. We address challenges posed
by the open-source software supply chain’s intricate usage
scenarios and license exceptions. To this end, we present
a novel compatibility analysis tool to discern various usage
scenarios and manage license exceptions and tailored clauses.
This advancement is grounded in comprehensive empirical
studies on license exceptions, which we have organized and
analyzed alongside real-world examples. By introducing a
Structured Representation of License Terms (SRLT), we clar-
ify ambiguous license scopes and employ automated reasoning
to construct a scenario-based compatibility knowledge graph,
ultimately deriving precise compatibility conclusions.

Our research innovates in the area of license representation,
specifically tackling exceptions. The introduced LiScopeLens
tool is designed to overcome the limitations of existing com-
patibility checkers, which need help to provide accurate results
across different usage contexts. We aim to develop a compre-
hensive license-checking tool that can handle exceptions and
unknown compatibilities. Our plans include:

• Developing a hybrid character and semantic-based de-
tection algorithm to pinpoint specific clauses in license
texts and interpret their effective scopes using the SRLT
method.

• Incorporating additional compliance checks, such as out-
bound licensing considerations, and validating the tool’s
accuracy using a wider range of real-world data samples.

ACKNOWLEDGEMENT

This work is supported by HY-Project under No.4E49EFF3,
the Gansu Province Key Research and Development Plan -
Industrial Project under Grant No. 22YF7GA004, the Open
Research Fund of The State Key Laboratory of Blockchain
and Data Security, Zhejiang University, and Supercomputing
Center of Lanzhou University.

REFERENCES

[1] G. S. Kyle Daigle, “Octoverse: The state of open source and rise
of ai in 2023,” https://github.blog/2023-11-08-the-state-of-open-source-
and-ai/, 2024, accessed: 2024-03-25.

[2] A. C. Roman, K. Xu, A. Smith, J. T. Vega, C. Robinson, and J. M. L.
Ferres, “Open data on github: Unlocking the potential of ai,” 2023.

[3] X. Liu, Y. Zhang, Q. Yu, J. Min, J. Shen, R. Zhou, and Q. Zhou,
“Smarteagleeye: A cloud-oriented webshell detection system based on
dynamic gray-box and deep learning,” Tsinghua Science and Technology,
vol. 29, no. 3, pp. 766–783, 2024.



[4] C. Vendome, M. Linares-Vasquez, G. Bavota, M. Di Penta, D. M.
German, and D. Poshyvanyk, “When and why developers adopt and
change software licenses,” in 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Sep 2015. [Online].
Available: http://dx.doi.org/10.1109/icsm.2015.7332449

[5] “Gpl legal battle: Vizio told it will face contract claims,”
https://www.theregister.com/2022/05/16/vizio gpl contract/, 2022, ac-
cessed: 2024-03-25.

[6] “China’s courts pass controversial rulings on open-source licencing,”
https://www.lexology.com/library/detail.aspx?g=597bfc93-0e53-4ffb-
8311-a8fe3129d7f8, 2024, accessed: 2024-03-25.

[7] E. Zio, “Reliability engineering: Old problems and
new challenges,” Reliability Engineering & System Safety,
vol. 94, no. 2, pp. 125–141, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0951832008001749

[8] K. C. Kapur and M. Pecht, Reliability engineering. John Wiley & Sons,
2014, vol. 86.

[9] E. Zio, “Some challenges and opportunities in reliability engineering,”
IEEE Transactions on Reliability, vol. 65, no. 4, pp. 1769–1782, 2016.

[10] M. C. Sánchez, J. M. C. de Gea, J. L. Fernández-
Alemán, J. Garcerán, and A. Toval, “Software vulnerabilities
overview: A descriptive study,” Tsinghua Science and Technology,
vol. 25, no. 2, pp. 270–280, 2020. [Online]. Available:
https://www.sciopen.com/article/10.26599/TST.2019.9010003

[11] J. E. Breneman, C. Sahay, and E. E. Lewis, Introduction to reliability
engineering. John Wiley & Sons, 2022.

[12] M. Feng, W. Mao, Z. Yuan, Y. Xiao, G. Ban, W. Wang,
S. Wang, Q. Tang, J. Xu, H. Su, B. Liu, and W. Huo, “Open-
source license violations of binary software at large scale,” in
2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), Feb 2019. [Online]. Available:
http://dx.doi.org/10.1109/saner.2019.8667977

[13] C. Vendome, M. Linares-Vasquez, G. Bavota, M. Di Penta, D. German,
and D. Poshyvanyk, “License usage and changes: A large-scale study of
java projects on github,” in 2015 IEEE 23rd International Conference
on Program Comprehension, 2015, pp. 218–228.

[14] Z. Wang, G. Xiao, Z. Zhang, and S. Wu, “A novel model for
automatic identification of open source software license terms,” in 2021
IEEE 4th International Conference on Computer and Communication
Engineering Technology (CCET), Aug 2021. [Online]. Available:
http://dx.doi.org/10.1109/ccet52649.2021.9544240

[15] C. Vendome, M. Linares-Vasquez, G. Bavota, M. Di Penta, D. German,
and D. Poshyvanyk, “Machine learning-based detection of open source
license exceptions,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE), May 2017. [Online]. Available:
http://dx.doi.org/10.1109/icse.2017.19

[16] B. Moreau, P. Serrano-Alvarado, M. Perrin, and E. Desmontils, “Mod-
elling the compatibility of licenses,” in The Semantic Web, P. Hitzler,
M. Fernández, K. Janowicz, A. Zaveri, A. J. Gray, V. Lopez, A. Haller,
and K. Hammar, Eds. Cham: Springer International Publishing, 2019,
pp. 255–269.

[17] D. M. German, Y. Manabe, and K. Inoue, “A sentence-matching
method for automatic license identification of source code files,”
in Proceedings of the IEEE/ACM international conference on
Automated software engineering, Sep 2010. [Online]. Available:
http://dx.doi.org/10.1145/1858996.1859088

[18] M. Scarlato and L. Nöth, “Lcv-cm: a fasten open source
license compliance verifier with compatibility matrix.” 2023
17th International Conference on Open Source Systems and
Technologies (ICOSST), pp. 1–7, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:267338736

[19] G. M. Kapitsaki and D. Paschalides, “Identifying terms in open
source software license texts,” in 2017 24th Asia-Pacific Software
Engineering Conference (APSEC), Dec 2017. [Online]. Available:
http://dx.doi.org/10.1109/apsec.2017.62

[20] S. Xu, Y. Gao, L. Fan, Z. Liu, Y. Liu, and H. Ji, “Lidetector: License
incompatibility detection for open source software,” ACM Transactions
on Software Engineering and Methodology, vol. 32, no. 1, p. 1–28, Jan
2023.

[21] D. A. Wheeler, “The free-libre / open source software (floss) li-
cense slide,” https://dwheeler.com/essays/floss-license-slide.html, 2017,
accessed: 2024-03-26.

[22] “Anything important you should know about licenses,”
https://compliance.openeuler.org/, accessed: 2024-05-09.

[23] G. M. Kapitsaki, F. Kramer, and N. D. Tselikas, “Automating the license
compatibility process in open source software with spdx,” Journal of
Systems and Software, vol. 131, pp. 386–401, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121216300905

[24] W. Contributors, “License compatibility,” Feb 2024. [Online]. Available:
https://en.wikipedia.org/wiki/License compatibility

[25] D. M. Germán and A. Hassan, “License integration patterns: Addressing
license mismatches in component-based development,” 2009 IEEE 31st
International Conference on Software Engineering, pp. 188–198, 2009.
[Online]. Available: https://api.semanticscholar.org/CorpusID:7948084

[26] C. Vendome, D. M. German, M. Di Penta, G. Bavota,
M. Linares-Vásquez, and D. Poshyvanyk, “To distribute or
not to distribute?” in Proceedings of the 40th International
Conference on Software Engineering, May 2018. [Online]. Available:
http://dx.doi.org/10.1145/3180155.3180221

[27] G. M. Kapitsaki, A. C. Paphitou, and A. P. Achilleos, “Towards open
source software licenses compatibility check,” Proceedings of the 26th
Pan-Hellenic Conference on Informatics, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:257805970

[28] W. Xu, X. Wu, R. He, and M. Zhou, “Licenserec: Knowledge based
open source license recommendation for oss projects,” 2023 IEEE/ACM
45th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pp. 180–183, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:259105134

[29] D. M. German, M. Di Penta, and J. Davies, “Understanding and
auditing the licensing of open source software distributions,” in 2010
IEEE 18th International Conference on Program Comprehension, Jun
2010. [Online]. Available: http://dx.doi.org/10.1109/icpc.2010.48

[30] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying
open-source license violation and 1-day security risk at large
scale,” Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:7402387

[31] S. van der Burg, E. Dolstra, S. McIntosh, J. Davies, D. M. German,
and A. Hemel, “Tracing software build processes to uncover license
compliance inconsistencies,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, Sep
2014. [Online]. Available: http://dx.doi.org/10.1145/2642937.2643013

[32] “Osadl compatibility matrix of foss licenses (”client-only” version),”
https://www.osadl.org/html/CompatMatrix-noexpl.html, accessed: 2024-
05-09.

[33] S. Zacchiroli, “A large-scale dataset of (open source) license text
variants,” 2022 IEEE/ACM 19th International Conference on Mining
Software Repositories (MSR), pp. 757–761, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:247922555

[34] “scancode-toolkit,” https://github.com/nexB/scancode-toolkit, accessed:
2024-05-09.

[35] “Licensing: Gpl2-only is apache 2.0 incompatible,”
https://github.com/libgit2/libgit2/issues/567, accessed: 2024-05-09.

[36] “Software licenses in plain english,” https://www.tldrlegal.com/, ac-
cessed: 2024-05-09.

[37] “tldrlegal: Unlicense,” https://www.tldrlegal.com/, 2024, accessed: 2024-
05-09.

[38] “Mpl 2.0 faq,” https://www.mozilla.org/en-US/MPL/2.0/FAQ/, 2024, ac-
cessed: 2024-05-09.

[39] D. Paschalides and G. M. Kapitsaki, “Validate your spdx files for open
source license violations,” Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016.
[Online]. Available: https://api.semanticscholar.org/CorpusID:17156519

[40] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,” in
Proceedings of the 8th Working Conference on Mining Software Repos-
itories, 2011, pp. 63–72.

[41] I. S. Makari, A. Zerouali, and C. D. Roover, “Prevalence and evolution
of license violations in npm and rubygems dependency networks,” in
International Conference on Software Reuse, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:249872864

[42] Y. Higashi, K. Fukui, K. Yutaro, and M. Ohira, “A preliminary analysis
of gpl-related license violations in docker images,” in 2022 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2022, pp. 444–448.


